{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# GF Instruments correction\n", "2020-05-23\n", "\n", "GF Instruments use a custom linear calibration to convert the quadrature values measured by their instruments (e.g. CMD Explorer and CMD Mini-Explorer) into ECa. These calibrations can be supplied from the control unit as: 'F-Ground', 'F-0m' or 'F1-m'. It is essential to be aware of which calibration is being applied to the data as it has an important impact on the inversion of data collected with these instruments.\n", "> NOTE: this notebook reflects the best of our knowledge on the GF Instruments calibration procedure. Please consult with the manufacturer for further details." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# import\n", "import sys\n", "sys.path.append('../src')\n", "from emagpy.invertHelper import fMaxwellQ, getQs\n", "from emagpy import Problem\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What is the purpose of the calibration?\n", "The main advantage of these calibrations is that the ECa value obtained by the device is much closer to the ground EC than it would be if an ECa value obtained with the LIN approximation is used (e.g. as is done by most other EMI manufacturers). The LIN equation ($ECa = \\frac{4}{\\omega \\mu_0 s^2}Q$) is a simple multiplication of the Quadrature ($Q$) value. When the device is at 1 m above the ground the quadrature value measured would be smaller (due to the air layer) than when on the ground. This means that for the LIN derived ECa for the case where the device is at 1 m a smaller ECa value would be obtained in comparison to the ECa from the 'F-1m'.\n", "\n", "## How the GF calibration works?\n", "These calibrations equations are based on measurements made at a site with an assumed homogeneous conductivity of 50 mS/m. The quadrature values measured over 50 mS/m ($Q_{50}$) are used to compute a slope to directly convert the quadrature to ECa.\n", "\n", "The calibration equation is\n", "$$Q = a \\times ECa$$\n", "\n", "with \n", "$$a = \\frac{Q_{50}}{50}$$\n", "\n", "Once established, the calibration equation can be rearranged to be used to predict ECa as a function of measured quadrature:\n", "$$ECa = \\frac{Q}{a}$$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 0.64177379 3.56440701 10.94089299 1.14377679 5.42102768 14.2368228 ]\n" ] } ], "source": [ "# synthetic simulation of GF calibration for the CMD Explorer F-1m calibration\n", "cpos = ['vcp','vcp','vcp','hcp','hcp','hcp'] # coil orientation\n", "cspacing = [1.48, 2.82, 4.49, 1.48, 2.82, 4.49] # coil separation [m]\n", "hx = [1, 1, 1, 1, 1, 1] # height above the ground [m]\n", "freq = 10000 # Hz\n", "depths = np.array([5])\n", "Q50 = np.imag(getQs(np.ones(2)*50, depths, cspacing, cpos, freq, hx=hx))*1000 # [ppt]\n", "print(Q50)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "inverted slopes: [77.90907081 14.02757872 4.57001088 43.71482297 9.22334343 3.51201955]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAGGCAYAAADmRxfNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACHpElEQVR4nOzdd3hU1dbH8e8kIQmBJNQklABROghIj0iRjlTRV/CiICoWQpPrRVEEwYIVkW4HryKISFVBRIogSFEUpPea0JMQIG3O+8eWYG4CpJA5Seb3eZ55bvaeMzNrhjvLWefs4rAsy0JERERERCQbPOwOQERERERE8j4VFiIiIiIikm0qLEREREREJNtUWIiIiIiISLapsBARERERkWxTYSEiIiIiItmmwkJERERERLJNhYWIiIiIiGSbCgsREREREck2FRYiIiIiIpJtKizcXJcuXfDz8yM2Nvaax/Tq1Qtvb2/OnDkDwOXLl3n33Xdp1KgRgYGB+Pr6UrlyZQYMGMDu3btTHvfSSy/hcDhSbn5+flSvXp0RI0YQExOTctyFCxcYNWoU7du3p1ixYjgcDqZPn57l99SvXz8cDgedOnVKc9/ly5cZO3Ys1atXx8/PjzJlyvB///d//PXXX1l+PZG8LjfkgY0bNzJgwABq1KhBoUKFKFeuHPfff3+q57qRzZs306lTJ0JCQihcuDC1atViwoQJJCcnpxxz5swZ3nrrLZo1a0bJkiUpUqQIjRs3Zvbs2Zn5yETyndyQB/7Xq6++isPhoGbNmll6T23atMHhcDBgwIA090VFRdG3b1+CgoIoWLAgdevWZc6cOVl6HfkHS9zarFmzLMCaMWNGuvfHxcVZhQoVsjp37mxZlmWdOnXKqlevngVYnTp1ssaPH2999NFH1n/+8x8rNDTUKlCgQMpjR40aZQHW1KlTrf/+97/W1KlTrXvuuccCrPDwcMvpdFqWZVkHDhywAKtcuXJWixYtLMD69NNPs/R+Nm7caHl5eVm+vr5Wx44d09zfvXt3y8vLy3rqqaesDz/80Bo9erQVFBRk+fv7WwcPHszSa4rkdbkhD9x7771WSEiINXDgQOvDDz+0Xn75ZSs4ONgqVKiQtXXr1hu+h02bNlne3t5WjRo1rHHjxlnTpk2zunbtagHWoEGDUo5btGiRVaBAAatr167W+PHjrUmTJll33XWXBVgjR47MzscokqflhjzwT0eOHLH8/PysQoUKWTVq1Mj0+5k7d65VqFAhC7AiIiJS3RcdHW1VrFjR8vf3t0aMGGFNmjTJatasmQVYX3zxRaZfS65SYeHmLl68aPn7+1vt2rVL9/6ZM2dagDVr1izLsiyrY8eOloeHh/X111+nOfby5cvWv//975T2lURy6tSpVMd1797dAqxffvkl5XEnTpywLMsUBlktLJxOpxUeHm498sgjVvny5dMUFkePHrUA65lnnknV/9NPP1mANW7cuEy/pkh+kBvywNq1a634+PhUx+zevdvy8fGxevXqdcP30K9fP8vb29s6c+ZMqv5mzZpZAQEBKe39+/enOYngdDqtli1bWj4+PtaFCxdu+Foi+VFuyAP/1KNHD6tly5ZW8+bNM11YXLp0yapQoYI1ZsyYdAuLN9980wKs5cuXp/QlJydbDRo0sEJCQtLkIsk4DYVycwULFqR79+4sX76ckydPprl/5syZ+Pv706VLF3799Ve+/fZbHn30Ue699940x/r4+PD222/f8DVbtmwJwIEDB1IeFxISks13Av/973/Ztm0br776arr3X7m8GxwcnKq/VKlSgPksRNxRbsgDd9xxB97e3qmOqVSpEjVq1GDHjh03fL6YmBh8fX0pUqRIqv5SpUql+m6HhYVRvnz5VMc4HA66detGfHw8+/fvv+FrieRHuSEPXLF69Wq+/vprxo8fn6X38uabb+J0OnnmmWfSvf/nn3+mZMmSKa8P4OHhwf33309kZCSrVq3K0uuK5lgIZsxkUlISX331Var+s2fPsnTpUu655x4KFizIwoULAXjooYey9Xr79u0DoHjx4tl6nn+KjY3l2Wef5fnnn79mkXLrrbdStmxZ3nnnHRYtWsTRo0fZsGEDTz75JGFhYfTs2fOmxSOS1+TGPGBZFlFRUZQoUeKGz9eiRQtiYmJ44okn2LFjB4cOHWLatGl88803DB8+/IaPj4yMBMjQa4nkV7khDyQnJzNw4EAee+wxbrvttkw/5+HDh3n99dd54403rnnCMD4+Pt37/Pz8ADNfS7JGhYXQsmVLSpUqxcyZM1P1z5kzh8TERHr16gWQctYws1/0s2fPcvr0aQ4ePMgHH3zAlClTCA4OpmnTpjfnDQBjxoyhYMGCPP3009c8pkCBAsydO5dChQrRpUsXQkNDadSoERcuXOCXX35Jc6ZTxJ3kxjzwxRdfcOzYMXr06HHD5+/Xrx8DBgxgxowZVK9enQoVKjBgwAAmTJjA4MGDbxjbRx99RNOmTVOuYIq4o9yQB6ZNm8ahQ4d4+eWXs/Qe/v3vf3P77bdf92RhlSpVOHr0KIcOHUrV//PPPwNw7NixLL22gJfdAYj9PD096dmzJ++++y4HDx6kQoUKgLnsGRwcTKtWrQBSVm7w9/fP1PNXqVIlVbtGjRrMmDEj5cxAdu3evZv33nuPL7/8Eh8fn+seW7RoUerUqcP//d//0bhxY/bu3cvYsWP5v//7P5YtW4avr+9NiUkkr8lteWDnzp1EREQQHh5Onz59MhT/rbfeSrt27fi///s/fH19+fLLLxk4cCAhISF069Yt3cc5nU569erF+fPnmThxYqbek0h+Y3ceOHPmDCNHjuTFF1+kZMmSmY5/xYoVzJ07l19//fW6xz322GNMmzaN+++/n3fffZfg4GC++uor5s2bB8ClS5cy/dpi6IqFAKSchbhyluLo0aP8/PPP9OzZE09PTwACAgIArrsUXXrmzp3LsmXLWLlyJXv37mXbtm3Uq1fvpsU+ePBg7rjjjnTHef5TdHQ0TZs2JTw8nLFjx9K1a1f+/e9/M3fuXNasWcOnn35602ISyYtySx6IjIykY8eOBAYG8vXXX6e89vVcGfrw5Zdf0rt3b+6//37mzZvHnXfeSUREBElJSek+buDAgSxZsoSPPvqI2rVrZ+o9ieRHduaBESNGUKxYMQYOHJjpuJOSkhg0aBAPPfQQDRo0uO6xtWrVYubMmezbt48mTZpQsWJFJkyYkDKno3Dhwpl+fTFUWAgA9erVo2rVqnz55ZcAfPnll1iWlZJgAKpWrQrA1q1bM/XczZo1o3Xr1jRv3pxbb7315gUN/PTTTyxZsoTBgwdz8ODBlFtSUhKXLl3i4MGDKWdW5s6dS1RUFF26dEn1HM2bNycgIIC1a9fe1NhE8prckAeio6Pp0KED58+fZ8mSJZQuXTpDzz9lyhRatmyZ5gdBly5dOH78OAcPHkzzmNGjRzNlyhRef/31bI8VF8kv7MoDe/bs4YMPPmDQoEEp39mDBw9y+fJlEhMTOXjwIGfPnr3mc3/22Wfs2rWLJ554ItXvATAF0MGDB7l48WLK8ffddx/Hjx9nw4YNrFu3jkOHDnHLLbcAULly5Uy9L7lKhYWk6NWrF9u2bePPP/9k5syZVKpUKVXV37lzZwA+//xzu0JM4/DhwwB0796dsLCwlNuxY8f46aefCAsL45NPPgHMZjhAqs2ywEwQTU5OvuYZTRF3YmceuHz5Mp07d2b37t0sXryY6tWrZ/ixUVFRab7bAImJiQBpvt+TJ0/mpZdeYsiQITz77LPZC1wkn7EjDxw7dgyn08mgQYNS/ff8119/Zffu3YSFhTFmzJhrPv7w4cMkJibSpEmTVI8HU3SEhYXxww8/pHqMt7c3DRo0oHHjxnh7e/Pjjz8C0Lp165v2vtyNCgtJceVsxMiRI9myZUuqsxMA4eHhtG/fno8++oj58+eneXxCQsI1l3a7WU6cOMHOnTtTfiy0bNmSefPmpbmVLFmS+vXrM2/evJQEeOUMxKxZs1I958KFC4mLi+P222/P0dhF8gK78kBycjI9evRg3bp1zJkzh/Dw8Gse+795AMz3e9myZSk7Al95zq+++gp/f/9UZ0dnz57NoEGD6NWrF+PGjct0rCL5nR15oGbNmun+97xGjRqUK1eOefPm8eijj6Ycf/jwYXbu3JnS7tmzZ7qPB7j77ruZN28ejRo1uubr79mzh2nTptGpUyddscgGh2VZlt1BSO7RpEkTfvnlF8B8ySpWrJjq/lOnTtG2bVv++OMPOnfuTKtWrShUqBB79uxh1qxZnDhxgvj4eABeeuklRo8ezalTp264hOOkSZM4f/48x48fZ+rUqXTv3j3lh/7AgQMJDAwE4OGHH2bGjBkcOHAgZVJZeipUqEDNmjVZvHhxSl9CQgJ169Zl+/bt9OnTJ2Xy9qRJkyhatCh//vmnlpoUwZ48MGTIEN577z06d+7M/fffn+b+Bx98MOXv9PLAF198wYMPPsitt97K448/TsGCBfnyyy9Zt24dr7zyCi+88AIAGzZsoGnTpgQGBvLGG29QoECBVK9zxx13pAyHEHFndv0e+F8tWrTg9OnTbNu2LU3/qlWruNHPWIfDQUREBJMmTUrVX716df7v//6PcuXKceDAAaZOnYq/vz9r166lTJkymYpR/sG+vfkkN5o8ebIFWA0bNrzmMRcvXrTefvttq0GDBlbhwoUtb29vq1KlStbAgQOtvXv3phx3rZ0201O+fHkLSPd24MCBlOP69OmTpu9az/e/O29blmWdPXvWevrpp63KlStbPj4+VokSJayePXta+/fvv2GMIu7CjjzQvHnza+aA//1P1bXywJIlS6zmzZtbJUqUsLy9va3bbrvNmjZtWqpjPv300+u+zqeffpqxD0kkn7Pr98D/utbO21dyxo2Qzs7blmVZPXv2tEJDQy1vb2+rdOnS1pNPPmlFRUVlOj5JTVcsREREREQk2zTHQkREREREsk2FhYiIiIiIZJsKCxERERERyTYVFiIiIiIikm0qLEREREREJNtUWIiIiIiISLZ52R2AqzmdTo4fP46/vz8Oh8PucERyLcuyiI2NpXTp0nh45K9zEMoDIhmjPCAimckDbldYHD9+nNDQULvDEMkzjhw5QtmyZe0O46ZSHhDJHOUBEclIHnC7wsLf3x8wH05AQIDN0Yi4XrLTYvPBc5y6cJmShX2pV6Eonh5pz9bFxMQQGhqa8p3JT5QHxN0pDygPiOREHnC7wuLK5c6AgAAlEnE7S7adYPSi7ZyIvpzSVyrQl1Gdq9O+Zql0H5MfhwgoD4g7Ux4wlAfEneVUHshfAyZF5JqWbDvBU5//liqJAERGX+apz39jybYTNkUmIq6iPCAiOZkHVFiIuIFkp8XoRdux0rnvSt/oRdtJdqZ3hIjkB8oDIpLTeUCFhYgb2HDgbJozE/9kASeiL7PhwFnXBSUiLqU8ICI5nQdUWIi4gZOx104iWTlORPIe5QERyek8oMJCxA2E+CZn6Lggf98cjkRE7KI8ICI5nQdUWIjkZ5fOwYIIGv54H+UDPLjWeg4OzGoQDcOKuTI6EXGF+Avw3TAaLunIrQGW8oCIO0q8BD++RMPFbagakJBjeUCFhUh+tX0hTG4Ev3+O4/QuxtU/B5AmmVxpj+pcPd31q0UkD9vzI0xpDBvex3H+MONqHwOUB0TcysG1MLUJrHkXx4VIxlXfB+RMHrC9sJg8eTIVKlTA19eXRo0asWHDhusef/78eSIiIihVqhQ+Pj5UrlyZ7777zkXRiuQRCwbAVw/BhSgoXgn6LqFe238x9cG6hASmvrwZEujL1AfrXnPdahHJo34YAV/cC9FHoEg5ePAband8QnlAxJ2sfgum3w1n90HhEOjxBdW7PZNjecDWDfJmz57N0KFDmTZtGo0aNWL8+PG0a9eOXbt2ERQUlOb4hIQE2rRpQ1BQEF9//TVlypTh0KFDFClSxPXBi+RGlgUOB4Q2gj++hCZDoNl/oIBJHu1rlqJN9RA2HDjLydjLBPmby506QymSD4U2AiZB46fgrhfApzCgPCDiVso2BBxQtze0GQMFiwA5lwcclmXZtmB1o0aNaNCgAZMmTQLA6XQSGhrKwIEDee6559IcP23aNN566y127txJgQIFsvSaMTExBAYGEh0drZ02Jf84dwhiI6FcI9O2LDizD0pUzPJT5ufvSn5+b+LGYk7AmT0Q1uxq3+k9UKJS1p/Sxu/K6tWreeutt9i8eTMnTpxg3rx5dOvWLeV+y7IYNWoUH374IefPn6dJkyZMnTqVSpUy9n6VByRfijsNJ/6Aiq2u9rkwD9g2FCohIYHNmzfTunXrq8F4eNC6dWvWrVuX7mMWLlxIeHg4ERERBAcHU7NmTV577TWSk689wz0+Pp6YmJhUN5F8w5kM66eaMdRzHobLf///2+HIVlEhInmIZcHmGWZO1Ve94cKpq/dl48eE3eLi4qhduzaTJ09O9/4333yTCRMmMG3aNH799VcKFSpEu3btuHxZy+WKG7Is2Po1TG4Isx+C84ev3ufCPGDbUKjTp0+TnJxMcHBwqv7g4GB27tyZ7mP279/PTz/9RK9evfjuu+/Yu3cv/fv3JzExkVGjRqX7mLFjxzJ69OibHr+I7U7uhIUD4OhG0y5dF+JjwVdn3kTcxpl9sGgwHPzZtMvUg4RYoKStYd0MHTp0oEOHDuneZ1kW48ePZ8SIEXTt2hWAzz77jODgYObPn0/Pnj1dGaqIvaKPwuKhsGepaQfVgIQ4W0KxffJ2ZjidToKCgvjggw+oV68ePXr04IUXXmDatGnXfMzw4cOJjo5OuR05csSFEYvkgKQEWPkGTLvTFBU+AdDpXeizCALL2B2diLhCchKsnWBWejn4M3gVhHavwaPLoNgtdkeX4w4cOEBkZGSqUQ+BgYE0atTomqMeRPIdpxM2fgSTG5uiwtMb7hoBj6+EoGq2hGTbFYsSJUrg6elJVFRUqv6oqChCQkLSfUypUqUoUKAAnp6eKX3VqlUjMjKShIQEvL290zzGx8cHHx+fmxu8iF0ux8An7eDkdtOu3B46jlNBIeJOkuLh0w5wbLNphzWDzu+5RUFxRWRkJEC6ox6u3Pe/4uPjiY+PT2lraLTkac5k+G83OLDatMs2hC4TIaiqrWHZdsXC29ubevXqsXz58pQ+p9PJ8uXLCQ8PT/cxTZo0Ye/evTidzpS+3bt3U6pUqXSLCpF8xzfAnIXwKwH3fgwPzFJRIeJuvHygVB3wCTQ/JHovdKuiIqvGjh1LYGBgyi00NNTukESyzsMTytSHAoWg/RvwyBLbiwqweSjU0KFD+fDDD5kxYwY7duzgqaeeIi4ujr59+wLQu3dvhg8fnnL8U089xdmzZxk8eDC7d+/m22+/5bXXXiMiIsKutyCS8/avMis+XdHhLYjYALfdZyZpi0j+d/hXOHvgarv1SxDxq1lC0g3zwJWRDZkZ9aCh0ZLnnfgDTu642m7+LESsh8ZPmkIjF7B1H4sePXpw6tQpRo4cSWRkJHXq1GHJkiUplzYPHz6Mh8fV2ic0NJSlS5fy9NNPU6tWLcqUKcPgwYN59tln7XoLIjnn0jn44UX4/b9QrTP0+Nz0Fypub1wi4jrxF2D5GNjwAYQ1NVcnHA5z9dKNF2oICwsjJCSE5cuXU6dOHcAMbfr111956qmn0n2MhkZLnpV4CVa9YeZVlaoFj/4Inl5mj6oi5eyOLhVbCwuAAQMGMGDAgHTvW7lyZZq+8PBw1q9fn8NRidhs+0L47hmzczaY3TKTk0wiERH3sOdHWDzE7JwNEFgOki5DgYK2huUqFy5cYO/evSntAwcOsGXLFooVK0a5cuUYMmQIr7zyCpUqVSIsLIwXX3yR0qVLp9rrQiTPO7gWFg40O2cDFK0AiRfBM3eeWNCvFJHcJDbKFBQ7Fpp28UpmDHX59OcduaupU6cydepUDh48CECNGjUYOXLkNZemFMlTLp6Fpc/DH1+adpFyZnL2rS3tjcvFNm3axF133ZXSHjp0KAB9+vRh+vTpDBs2jLi4OB5//HHOnz/PnXfeyZIlS/D19bUrZJGb53IM/PgSbPrYtAuHQMd3oFonW8O6ERUWIrnFkY3wxX1w+Tw4POHOp6HZf8ylTkmlbNmyvP7661SqVAnLspgxYwZdu3bl999/p0aNGnaHJ5J1UX/BZ10h7hTggMZPQcsR4F3I7shcrkWLFliWdc37HQ4HY8aMYcyYMS6MSsQFzh6A6R0h5php1+0DbcZAwSK2hpURKixEcougamZPiqLlocskM45S0tW5c+dU7VdffZWpU6eyfv16FRaStxWvCH7Fza3LJAhtYHdEIuJqRcqBfynwLACdJ8Atze2OKMNUWIjYxZkMf82DGt3BwwN8CkOfBWYcteZSZFhycjJz5swhLi7umktVa/16ybUsy+SBap3NjwgvH/jXV+AfYv4WkfzPsmDHIqjUxsyh8vCE+2dAwWLg7Wd3dJmSp3beFsk3Tu40G93NfRQ2f3q1v9gtKioyaOvWrRQuXBgfHx+efPJJ5s2bR/Xq1dM9VuvXS650dj981gW+7gu/TLzaX7S8igoRdxF9FGb2gK8egpVjr/YHls1zRQWosBBxraQEWPkGTLsTjm40Q5/cZIWXm61KlSps2bIlZXnJPn36sH379nSP1fr1kqskJ5lCYsodZtdcr4LgXdjuqETElZxO2PgRTG4Me5aCpzf4FrE7qmzTqVERVzm6GRYOgJN///it3MGs8KCds7PE29ubihUrAlCvXj02btzIe++9x/vvv5/mWK1fL7lG5DaTB47/btphzcwY6mJh9sYlIq5zeq9ZQvbwL6ZdtiF0nQQlq9gb102gwkLEFdZPg6XDwXKCXwno8AbUvNctd8zNKU6nM9U8CpFc5/cvYNEgcCaBTyC0ewVuf0h5QMSdbF8Ac/tBcjwUKAStR0GDx3LNztnZpcJCxBVCGwIOqNUT2o8Fv2J2R5SnDR8+nA4dOlCuXDliY2OZOXMmK1euZOnSpXaHJnJtZRuAwwOqdoK734aAUnZHJCKuVqaeWaihwp3Q6V0zpyofUWEhkhMunYfD66FKe9MuUxciNkCJiraGlV+cPHmS3r17c+LECQIDA6lVqxZLly6lTZs2docmclX8Bdi/wqz4BFCyMjy1TnlAxJ0kXoLdS6FGN9MOLAuPr4Lit+bLq5UqLERuth2L4Ntn4OIZeHINBFU1/foxcdN8/PHHdocgcn17f4RFT0PMUXh0GZStb/qVB0Tcx8G1Zvjjmb3gOw9ubWn683EeUGEhcrPERsH3/zHjJwGKV4KkS/bGJCKudfEsLH0e/vjStIuUg+QEe2MSEde6HAM/vgSb/j4JVjjEzLF0AyosRLLLsmDLTPNj4vJ5cHhCk8HQ/Fko4Gt3dCLiCpYF2+fDd/+BuFOAAxo9CS1HmM0vRcQ97F4Ki5+GmGOmfftD0PYVKFjE1rBcRYWFSHZYFszqBbu+Ne1StaHLJChVy964RMS15veHP2aav0tWhS4T/160QUTcxvfPwa9Tzd9FK5ilpG9pbmtIrqYN8kSyw+GAco3AyxdavwSP/aSiQsQdlWsEHgXMlconVquoEHFH5Rqbld/CB5iFGtysqABdsRDJvJM7IekylK5j2o0jzKovxW6xNSwRcaGz+yHu9NUCom4fqNDUrPQiIu4h+pjJBWFNTbt6V4jYmK8nZ9+IrliIZFRSAqx8A6bdCd/0g8TLpt/TS0WFiLtIToJfJsKUO2BOX4iPNf0Oh4oKEXfhdMLGj2ByI5jTB+LOmH6Hw62LCtAVC5GMOboZFg6Ak9tNu9itkHhRk7NF3EnUX7BgABz/zbSL32L2qvDxtzcuEXGd03th4UA4/ItpBzWEhFgoVNzeuHIJFRYi15NwEVa8CuunmKXi/ErA3W9Cje75cmMbEUlHUjysfhvWjANnEvgEQrtX4fYHlQdE3EVyorlaufJ1SI6HAoWg9Sho8Bh4eNodXa6hwkLkWmIj4ZN2cO6gadfqAe3G6qyEiDu5dB4+bgund5l21U7Q8R3wD7E1LBFxocTL5vfAiS2mfWsr6Dze7FMjqaiwELmWwsFQNMyMqe48Hiq1sTsiEXG1gkUgqBpcOgcd3zaTM0XEvRTwNQu2nDsI7cdC7Qd0tfIaVFiI/NPO76BCE/ANNEnjnmngXUhjqEXcyd7lEHIbFA4y7Y7jTD7wK2ZvXCLiOod+gYAyULS8abcZA3e9cDUvSLoyVFgsXLgw00/cpk0bChYsmOnHidgiNgq+/w9sXwD1HobO75l+DXcQcR8Xz8LSF8xGd9W7wf0zTL+GP4q4j8sxsHy0WfXplrvgoXnmxIJvoN2R5QkZKiy6deuWqSd1OBzs2bOHW27REpySy1kWbJkJS5+Hy+fB4WkmaFuWLnOKuAvLgu3z4bv/QNwpwAH+pcCZrEmZIu5k91JY/DTEHDPtIqGQnABePvbGlYdkeChUZGQkQUEZu/zj769hI5IHnDsEiwbD/hWmXao2dJlo/ldE3EPMCfj237DrW9MuUQW6TtLO2SLuJO4MLHkOtn5l2kUrQOcJbrlzdnZlqLDo06dPpoY1PfjggwQEBGQ5KJEct/dHmP2Q2YvCyxdaDIfwAWazOxFxD4fXwxf3Q3w0eHhB03+bm85OiriPE3/Cf7vBxTPg8IDwCGjxPHj72R1ZnpShnbc//fTTTF2FmDp1KiVKlMjw8ZMnT6ZChQr4+vrSqFEjNmzYkKHHzZo1C4fDkemhWiKUqgMFCkL5JvDkWrhziIoKEXcTXMMszFC6LjyxGu56XkWFiLspURn8ikNQDXjsR2j7ioqKbMhQYfFPjzzyCLGxsWn64+LieOSRRzIdwOzZsxk6dCijRo3it99+o3bt2rRr146TJ09e93EHDx7kmWeeoWnTppl+TXFDSQmw9WszlhpMEnl0GfRZDCUq2hubiLhGclLqPODjDw8vMj8mgmvYG5uIuIbTafJAcpJpF/CFXl/D4yuhTD1bQ8sPMl1YzJgxg0uXLqXpv3TpEp999lmmAxg3bhz9+vWjb9++VK9enWnTpuHn58cnn3xyzcckJyfTq1cvRo8erQnicmNHN8MHzWHuo2bVpys/KorfCh6Z/gqISF4U9Rd83Mbkgd/+8d+qYrdograIuzi9F6Z3NHlg/eSr/UXLg5e3fXHlIxke+xETE4NlWViWRWxsLL6+vin3JScn891332V4cvcVCQkJbN68meHDh6f0eXh40Lp1a9atW3fNx40ZM4agoCAeffRRfv755+u+Rnx8PPHx8aneh7iJhDhY8RqsnwKW01yluPIDQis+ibiHpHhY/TasGQfOJPAJNMMgRcR9JCfBuomwYiwkx0OBQuBd2O6o8qUMFxZFihTB4XDgcDioXLlymvsdDgejR4/O1IufPn2a5ORkgoODU/UHBwezc+fOdB+zZs0aPv74Y7Zs2ZKh1xg7dmym45J8YP8qWDTI7JIJcNv90P51rUcv4k4O/woLB8LpXaZdtRPc/TYElLI3LhFxnRN/wIIBEPmnad/aEjqNv7rxndxUGS4sVqxYgWVZtGzZkrlz51Ks2NUdSL29vSlfvjylS5fOkSCviI2N5aGHHuLDDz/M8OTw4cOHM3To0JR2TEwMoaGhORWi5AY/vQqr3zR/B5SFTu9C5bb2xiQirvXLRPjhRcCCQkFw91tQvauuVoq4k80zzL4UVjL4FoH2Y6H2A8oDOSjDhUXz5mYt3wMHDhAaGorHTRibXqJECTw9PYmKikrVHxUVRUhI2h2P9+3bx8GDB+ncuXNKn9PpBMDLy4tdu3Zx6623pnqMj48PPj5a5cOtlGsMOKDBY9B6lJmgKSLupVy4+fFQ+19mlRe/Yjd+jIjkL6GNzBDoql2gw5tQOHND9iXzMr2+Zvny5Tl37hwff/wxO3bsAKB69er07ds31VWMjPD29qZevXosX748ZclYp9PJ8uXLGTBgQJrjq1atytatW1P1jRgxgtjYWN577z1diXBXsVEQtQ0qtjLtiq1gwCat9pSPjR07lm+++YadO3dSsGBB7rjjDt544w2qVKlid2hil4tn4cgGqNLetMvWh4iNygMi7uRyDBxYDdU6mXZQVei/3izWIi6R6csOq1evpkKFCkyYMIFz585x7tw5JkyYQFhYGKtXr850AEOHDuXDDz9kxowZ7Nixg6eeeoq4uDj69u0LQO/evVMmd/v6+lKzZs1UtyJFiuDv70/NmjXx9taMfrdiWfD7FzC5IXzVG84fuXqffkzka6tWrSIiIoL169ezbNkyEhMTadu2LXFxcXaHJq5mWfDXvL/zwENwavfV+5QHRNzH7h9gSmOTB479drVfRYVLZfqKRUREBD169GDq1Kl4epoVdpKTk+nfvz8RERFprijcSI8ePTh16hQjR44kMjKSOnXqsGTJkpQJ3YcPH74pw64knzl3CBYNhv0rTLtUbUhMuwyy5E9LlixJ1Z4+fTpBQUFs3ryZZs2a2RSVuFzMCfjuGdi52LRLVoWky/bGJCKuFXcaljwHW+eYdtEKkJxoa0juzGFZVxb1z5iCBQuyZcuWNEMOdu3aRZ06ddLd4yI3iYmJITAwkOjoaAICAuwORzLLmQwbPoDlYyDxInj5QovnIHygds6+yfLSd2Xv3r1UqlSJrVu3UrNmzRsen5fem6TDssxeFD+8CPHR4OEFdw6FZs9o5+ybLD9/V/Lze3MLlgXb5sL3w+DiGXB4QOP+cNcL2jn7JsvMdyXTv8Tq1q3Ljh070hQWO3bsoHbt2pl9OpGMS06CGZ3g8N97nJRvAp0naLiDm3M6nQwZMoQmTZpcs6jQfjb5iGXBzPthzw+mXboudJ2knbNF3M03/a5epQiqAV0naufsXCDThcWgQYMYPHgwe/fupXHjxgCsX7+eyZMn8/rrr/Pnn3+mHFurVq2bF6mIpxeENoTIbdBmNNTrq52zhYiICLZt28aaNWuueYz2s8lHHA6z4tOBn6HlC+YMpXbOFnE/5cJh+wJo9h9oMkQ7Z+cSmR4KdaP5Dg6HA8uycDgcJCcnZyu4nKBLn3nM0c3gUxhK/n2FLPGSWf0lsIy9cbmBvPBdGTBgAAsWLGD16tWEhYVd87j0rliEhobm6vcm/xC5zaxDX+rvq+LJiRBzzIyllhyVF/JAVuXn95Yvnd4Ll86aE4wATiecPwjFbrE1LHeQo0OhDhw4kOXARDIs4SKseBXWTzFDHR79wZyVLFBQRYVgWRYDBw5k3rx5rFy58rpFBWg/mzwrKR5Wvw1rxkHxivDEajOHwrOAigoRd5GcBOsmwoqxUDgY+q8zJxw9PFRU5EJZ2sdCJEftXwWLBsG5g6Zd7BZzpcKnsK1hSe4RERHBzJkzWbBgAf7+/kRGRgIQGBhIwYIFbY5OborDv8LCgXB6l2kXrwgJcZqcLeJOTvwJCwfAiT9Mu8TfeUC/B3KtLC2js2vXLiZOnJiyQV61atUYOHCgNqeS7Ll0Hn4YAb//17QDykKnd6FyW1vDktxn6tSpALRo0SJV/6effsrDDz/s+oDk5om/YFZ92/ABYEGhILj7Laje1cyvEJH8L/ESrHoD1k4wwyB9i0D7sVD7AeWBXC7ThcXcuXPp2bMn9evXJzw8HDCTt2vWrMmsWbO49957b3qQ4gZO74XpHeGCOfNMg8eg9Uvg429rWJI7ZXJqmOQVMcfh43YQfdi06/SCtq+AXzF74xIR17l4Fj5uA2f2mnb1bubkQuEgW8OSjMl0YTFs2DCGDx/OmDFjUvWPGjWKYcOGqbCQrClaAQJKmcubXSZC+TvsjkhEXM2/FBSrAA6g03io2MrmgETE5fyKQVA1c/Wy4ztQrZPdEUkmZLqwOHHiBL17907T/+CDD/LWW2/dlKDEDVgW/PUNVOkIBXzNUrI9Pge/EqYtIvmfZZlds8Oag2+AGeLQ/UPwLqwx1CLuZM8yKFUHCpc07U7jzcaXBYvYGJRkRaY3AWjRogU///xzmv41a9bQtGnTmxKU5HPnDsHn3eHrR2D1m1f7A8uqqBBxFzEnYPaD5rb8H3uM+IeoqJAMeemll3A4HKluVatWtTssyYy40zD3MfjiPljy3NX+QiVUVORRmb5i0aVLF5599lk2b96caoO8OXPmMHr0aBYuXJjqWJEUzmQzIXP5GEi8CF6+ULCo3VGJiCtZFvz2GfzwIsRHm7OSfiVMvyZlSibVqFGDH3/8MaXt5ZWlNWnE1SwLts2F74fBxTPg8DAnFZzJ2vAyj8v0N7B///4ATJkyhSlTpqR7H5BrN8gTm5zcaZaMO7rRtMs3gc4TzNJxIuIezu6HRYPhwGrTLl3XzKkKqWlvXJJneXl5ERISYncYkhnRx+DbobB7iWkH1TB5oGw9e+OSmyLThYXT6cyJOCQ/2/o1zHsSnIng7Q9tx0Ddh83mNiLiHnb/AF/1hqRL4FUQWr4Ajfvr7KRky549eyhdujS+vr6Eh4czduxYypUrl+6x8fHxxMfHp7RjYmJcFaZccXANzOwJCbHgUQCaD4MmQ8DL2+7I5CbRNUPJeWUbgKc33NrS7EuhnbNF3E/p280cqtAG0Pk97Zgr2daoUSOmT59OlSpVOHHiBKNHj6Zp06Zs27YNf/+0S5WPHTuW0aNHp/NM4jIht5ll5IOqQpdJ5n8lX3FYGVgQfsKECTz++OP4+mZsYu20adPo1atXul9su8XExBAYGEh0dDQBAQF2h5M/JVyEPUuhxj1X+87sMz8kNIY6z8jP35X8/N5yjaR42LEIbrvvap/yQJ6Tl74r58+fp3z58owbN45HH300zf3pXbEIDQ3NE+8tz0pOgr/mmTxw5Xt/9gAUKaerlXlIZvJAhsaiPP3008TGxmY4gGHDhnHq1KkMHy/5yP5VMDUc5jxs/r6i+K36MSHiLo5sgGlNYe6jsP3qgh7KA5KTihQpQuXKldm7d2+69/v4+BAQEJDqJjnoxJ/wUUv45jHY8sXV/mJhKirysQwNhbIsi1atWmV4tYVLly5lKyjJgy6dh2UvmtVeAALK2hqOiNgg/gL89DL8+j5gQaGS4FnA7qjETVy4cIF9+/bx0EMP2R2Ke0u8DKvegLXvgZUMvkXMKpDiFjJUKYwaNSpTT9q1a1eKFSuWpYAkD9qxGL79N1yINO0G/aD1KDOOUkTcw97lsGgIRB827Tq9oO0rZhddkRzwzDPP0LlzZ8qXL8/x48cZNWoUnp6ePPDAA3aH5r4OrTMrQJ75+6pR9W5w91tQOMjWsMR1cqSwEDeyeChs+tj8XbyiWTKu/B32xiQirvXjaFgzzvwdWA46j4eKrWwNSfK/o0eP8sADD3DmzBlKlizJnXfeyfr16ylZsqTdobmnNe/Cjy+ZvwuHQMe3oVpnW0MS19OqUJI95e+AzdPhziHQbJh2zhZxR+XvgLXjoeET0HKEds4Wl5g1a5bdIcg/lbvDbHR3+4PQ5mXtnO2mVFhI5pw7BOcPQ1hT0655r1lGsvit9sYlIq4TcwJObr96VaJSGxiwSXlAxJ3EnTGb3lZpb9rlGikPSMZWhRLBmQzrp8KUxvB1X7h41vQ7HEoiIu7CsmDzDJjcyKz8Fn3s6n3KAyLuwbLMxreTG5hNL0//YxUu5QG3pysWcmMnd5rJWEc3mnbp2yEhTpMyRdzJ2f2waDAcWG3apW+HRK0AKOJWoo+auZV7lpp2UA1IumxvTJKrZLmwOH36NN7e3loHOj9LSjCTsVa/Bc5E8PaHNqOhXl/w0MUuEbeQnAS/ToWfXoWkS+BVEFq+AI2eAk+dmxJxC04nbP4Ulo2ChFjwKADN/gN3Pg1e3nZHJ7lIpv6rcP78eV544QVmz57NuXPnAChZsiR9+/blxRdfxM/PL0eCFBskXISPWsPJv0y7cnvoOA4Cy9gbl4i4TnIifNrh6tXKCk2hywSze7aIuAfLgi/uhX0/mXbZhmYFyKCq9sYluVKGC4uzZ88SHh7OsWPH6NWrF9WqVQNg+/btTJw4kWXLlrFmzRr+/PNP1q9fz6BBg3IsaHEBbz8oc7vZm6LDm2aStnbMFXEvngUgtBGc2g1tX4a6vZUHRNyNw2FWfju8HlqNhIaPa+dsuaYMj2cZM2YM3t7e7Nu3j/fff58hQ4YwZMgQPvjgA/bu3UtCQgIPPfQQbdq0ITAwMFNBTJ48mQoVKuDr60ujRo3YsGHDNY/98MMPadq0KUWLFqVo0aK0bt36usdLJuxfBeePXG23fRUiNsJt9+nHhIi7OLLBFBJX3PUCRPwK9fooD4i4ixN/mtsVTYaYPND4KRUVcl0ZLizmz5/P22+/TXBwcJr7QkJCePPNN5k7dy5Dhw6lT58+GQ5g9uzZDB06lFGjRvHbb79Ru3Zt2rVrx8mTJ9M9fuXKlTzwwAOsWLGCdevWERoaStu2bTl27Fi6x0sGXDoPCwfCZ11g8dPmsieYNagLFbczMhFxlfgL8P1z8HFbWBBhVoIDc/UyoJS9sYmIayReNhteftAC5j1p5lqCuXpZpJytoUnekOHC4sSJE9SoUeOa99esWRMPD49M79I9btw4+vXrR9++falevTrTpk3Dz8+PTz75JN3jv/jiC/r370+dOnWoWrUqH330EU6nk+XLl2fqdeVvOxabpSN/+8y0i5Y346pFxH3sXQ5Tws0kbSwoXlErvYi4m0PrYFoTWDMOrGQoURESL9odleQxGZ5jUaJECQ4ePEjZsmXTvf/AgQMEBQVl6sUTEhLYvHkzw4cPT+nz8PCgdevWrFu3LkPPcfHiRRITEylWLP2lT+Pj44mPj09px8TEZCrGfOvCSfjuGdi+wLSLVzSTscrfYW9cIuI6F8/C0hfgj5mmHVgOOr8LFVvbG5eIuM7lGFg+GjZ+ZNqFQ6DjO1Ctk71xSZ6U4SsW7dq144UXXiAhISHNffHx8bz44ou0b98+Uy9++vRpkpOT0wyvCg4OJjIyMkPP8eyzz1K6dGlat07/P4Rjx44lMDAw5RYaGpqpGPMdy4Jjv8GkBqaocHjCnUPhybUqKiTPWL16NZ07d6Z06dI4HA7mz59vd0h5z6ldMLnh30WFAxo9Cf3XqagQcSfnj5irlVeKirq9zVwKFRWSRRm+YjFmzBjq169PpUqViIiIoGrVqliWxY4dO5gyZQrx8fF89tlnORlrGq+//jqzZs1i5cqV+Pr6pnvM8OHDGTp0aEo7JibGfYuLK3MngqqBX3EzXrLrZChVy964RDIpLi6O2rVr88gjj9C9e3e7w8mbit0KAaWhYDHoOglCG9odkYi4WkAZKFrB7EnTeQLc0tzuiCSPy3BhUbZsWdatW0f//v0ZPnw41t8/Uh0OB23atGHSpEmUK5e5iT0lSpTA09OTqKioVP1RUVGEhIRc97Fvv/02r7/+Oj/++CO1al37h7GPjw8+Pj6ZiivfcSbD1q/NkrGeXlCgIDw0zyQUbXAleVCHDh3o0KGD3WHkLZYF2+ZCtc7g5WO++z1nQqGSpi0i+Z9lmdEKFVuBj7/Z7Pbej8A30CzUIJJNmfpVGRYWxvfff8+5c+fYs2cPABUrVrzm/IYb8fb2pl69eixfvpxu3boBpEzEHjBgwDUf9+abb/Lqq6+ydOlS6tevn6XXdhsnd8LCAWaDq4unITzC9Bctb29cIi7k9nOtzu6HRYPhwGpoNszsnA0QmP6cORHJh6KPwbdDYfcSaPgE3P2m6deqb3ITZel0ddGiRWnY8OZcNr+yPG39+vVp2LAh48ePJy4ujr59+wLQu3dvypQpw9ixYwF44403GDlyJDNnzqRChQopczEKFy5M4cKFb0pM+UJSAqx5F1a/Bc5E8PYHnwC7oxKxxdixYxk9erTdYbieMxnWT4WfXoGkS+BVEPyydiJIRPIopxM2fwrLRkFCLHgUgMIlzdUL7U0jN5nt42B69OjBqVOnGDlyJJGRkdSpU4clS5akTOg+fPgwHh5X55hPnTqVhIQE7rvvvlTPM2rUKF566SVXhp57Hd1srlKc3G7aldpBp3chsIy9cYnYxC3nWkX9BQsGwPHfTLtCU+gyAYrdYm9cIuI6Z/bBwkFwaI1pl21oVoAMqmpvXJJv2V5YAAwYMOCaQ59WrlyZqn3w4MGcDygv2/AhfD8MLKeZoN3hTTO3QmclxI253VyrP2bDgv7gTAKfQGj3Ctz+kPKAiDvZ+R183dfsSVOgELQaCQ37aedsyVG5orCQm6j8HWYJ2Zr3QfvXtXO2iDsKbQie3uZqZcd3NIZaxB2VqQdevuZ3QafxmlspLqHCIq+7dB4O/mxWegEIqm7WoC5+q61hieSkCxcusHfv3pT2gQMH2LJlC8WKFcv06nT5QvwF2LsMatxj2sXC4Km1UDRMVylE3EXiZdi5GG77e6i4fzA8vkJ5QFxKhUVetmMxfPtviDsF/X6C0nVM8lBRIfncpk2buOuuu1LaV+ZP9OnTh+nTp9sUlU32LodFQyD6sFk6tsKdpl9zKUTcx6F1Zm7lmb1QwA+q3m36lQfExVRY5EUXTsJ3/4Ht8027eEWz+ouIm2jRokXKXjpu6+JZ+GEEbPnCtAPd8EqNiLu7HAPLx8DGD027cAh4FrA3JnFrKizyEsuCP76EJcPh8nkzl6LJYGj+LBRIf+dxEclnrmxw9d1/IO4k4IBGT0DLF8FHS26LuI3dP8DipyHmqGnX7Q1tXoaCRWwNS9ybCou85KvesGOh+TukFnSdBKVq2xuTiLjWokHw22fm7xJVTB4IvTn7ColIHvHDCPhlovm7aAXoPAFuaW5rSCIAHjc+RHKNCk3B0wdavwT9VqioEHFHFZqCh5fZQfvJn1VUiLijCk3B4QHhA+CpdSoqJNfQFYvc7OROiI+F0Aam3eAxqNzWnJ0QEfdwdj/EHL86Kfu2/4Oy9TUpU8SdRB+DUzuhYivTrtwOBm5WHpBcR1cscqOkBFj1JrzfFOY+CgkXzbhqDw8VFSLuwplshjpMuQO+fgQunTP9Dod+TIi4C6cTNn4MkxvBnL4Qc+LqfcoDkgvpikVuc3SzWTLu5HbTDqoGiRfB28/euETEdaL+ggUD4Phvpl2ivjnBULCovXGJiOuc3mvmVB1aa9plG0DSJXtjErkBFRa5RcJFWPEqrJ8ClhP8ikOHN6HmvdrYRsRdJMXDz++YmzMJfAKh7ctmtRflARH3kJwE6ybByrGQdNnsS9FqFDTsBx6edkcncl0qLHKDuNPwUSs4d9C0b7sf2r8OhYrbGpaIuFD8BZMHTu007aqd4O63IaCUvXGJiOskJcAn7a5erby1JXQaD0XL2xqWSEapsMgN/IpDUHVIToRO75pJWSLiXnwKQ+nb4eIZuPstqN5NVylE3I2XN4Q2Mos2tHsN6vxLeUDyFBUWdtn5nUkehYqbpNF5Anj5gG+A3ZGJiKvsXQ4lq0BgWdNuPxas18CvmL1xiYjrHFoHhUpCiYqm3XIE3Pk0+AfbG5dIFmhVKFe7cBK+6gOzHoClw6/2Fy6pokLEXVw8C/P7w+fdYfFQs+obmMnZKipE3EN8LHz7DHza3iza4nSafp/CKiokz9IVC1exLPhjlikmLp0DhycElDGJxEP1nYjb2L7A/JiIOwk4oFiYmajtWcDuyETEVfYsg0VDIOaoaRevCMnx4FHQ1rBEskuFhSucOwSLh8C+n0w7pBZ0nQylatkaloi4UGwkfPtv2LnYtEtUga6TtHO2iDuJO2NOMP4527SLVoDO78EtLeyMSuSmUWGR0/avhC//BYlx4OULLZ6D8IHgqY9exG0c3Qz/vQfio8HDC+4cCs2eMfOqRMQ9nNwB0zvBxdPg8IDG/eGuF7RPleQr+nWb00rVAR9/KF3HTNC+MjlLRNxHUDUzd6L4rdBlIoTUtDsiEXG14hXBvxQUDoauE6FMPbsjErnpVFjcbEkJ8Nc3UKuHWe2pYBF4dCkEltNcChF34UyGrXPgtv8zG1p5+0GfhWZelTa4EnEPTids+9osHe3lbeZR/WsWFAoybZF8SIXFzXRsMywYCCf/MpO16zxg+otWsDUsEXGhqL9gwQCzwdWl89DoCXOSoUg5uyMTEVc5vRcWDYJDa82eFC2eM/1XlpYWyadUWNwMCRdhxauwfgpYTrPhncZMiriXpHhY/TasGWdWefIJ0BLSIu4mOQnWTYKVYyHpMhTwM78JRNyECovsOrAaFg6EcwdN+7b7of3rZuM7EXEPRzaYPHBqp2lX6Qgd34aA0vbGJSKuc+JPsx/FiT9M+5a7oPN4jVoQt6LCIjtWvWmuVIAZO93pXajczt6YRMS11k+DJc8Bltk99+63zJhqh8PuyETEVX7/wpxcsJLBNxDajYU6/1IeELejwiI7KjQ1S8bVfwRajdKwBxF3VKGJmZB92/3Q7lXtnC3ijso1Bk9vqNwWOrylnbPFbamwyIwLJ+HYb1ClvWmXD4eBv5mdc0XEPVw8ayZkVuts2iG3wYBNygMi7iQ+1uyeXbO7aRe/FfqvUx4Qt5cr1j+dPHkyFSpUwNfXl0aNGrFhw4brHj9nzhyqVq2Kr68vt912G999913OBmhZsGUmTGoAcx42KzxcoSQiYpvM5o5s274AJjcyeSBy69V+5QER27g8D+xZBpMbw9d94dC6q/3KAyL2FxazZ89m6NChjBo1it9++43atWvTrl07Tp48me7xv/zyCw888ACPPvoov//+O926daNbt25s27YtZwI8fxg+vxfmPwWXz0OJSmavChGxVWZzR7bERsKsXvBVb4g7CcVuMSs/iYitXJoH4s7AN4/DF/dBzFFNyhZJh8OyLMvOABo1akSDBg2YNGkSAE6nk9DQUAYOHMhzzz2X5vgePXoQFxfH4sWLU/oaN25MnTp1mDZt2g1fLyYmhsDAQKKjowkIuM6cCGcybPwIfhwNiXHg6QN3DYfwAWaTG5F8LsPfFZtkNnf8U4bfm2XB7/+FpSMgPho8vODOodDsGfDyuZlvRyRXUh7A5IFtc+H7Z+HiaTO3snF/uOt58C50M9+OSK6UmTxg6xyLhIQENm/ezPDhw1P6PDw8aN26NevWrUv3MevWrWPo0KGp+tq1a8f8+fPTPT4+Pp74+PiUdkxMzI0Dczrhs65w8GfTLt8EOk+AEhVv/FgRyXGZzR1ZygOWBbP+Bbv+HmpZ+nboMglCamY7fhHJPpfkAYD5/eGPmebvoOomD5Stl63YRfIrW4dCnT59muTkZIKDU6+eEBwcTGRkZLqPiYyMzNTxY8eOJTAwMOUWGhp648A8PEwx4e0PHcdBn8UqKkRykczmjizlAYcDwpqBV0Fo+wo8+qOKCpFcxCV5AEwe8CgALZ6Hx1epqBC5DtvnWOS04cOHEx0dnXI7cuRIxh7YdChE/AoNHjWFhojkWVnOAw0fN3ngjoHgqUX0RPKyLOeB2j1hwEZo8Sx4eedskCJ5nK3/pSxRogSenp5ERUWl6o+KiiIkJCTdx4SEhGTqeB8fH3x8sjAW2ssHAstk/nEikuMymzuynAc8PKFo+ayGKSI5yGV5wOHQik8iGWTrqXhvb2/q1avH8uXLU/qcTifLly8nPDw83ceEh4enOh5g2bJl1zxeRPKfrOQOEclflAdEch/br+0PHTqUPn36UL9+fRo2bMj48eOJi4ujb9++APTu3ZsyZcowduxYAAYPHkzz5s1555136NixI7NmzWLTpk188MEHdr4NEXGxG+UOEcn/lAdEchfbC4sePXpw6tQpRo4cSWRkJHXq1GHJkiUpk7EOHz6Mxz/mONxxxx3MnDmTESNG8Pzzz1OpUiXmz59PzZoZm1R5ZXXdDK8GIeKmrnxHbF6R+ppulDuuR3lAJGOUB0QkM3nA9n0sXO3o0aMZXwlCRDhy5Ahly5a1O4ybSnlAJHOUB0QkI3nA7QoLp9PJ8ePH8ff3x+FwpHtMTEwMoaGhHDlyJFduCJRb6HPKmLz6OVmWRWxsLKVLl0511TA/yEgegLz7b+dK+owyJq9+TsoDefffzpX0GWVMXv2cMpMHbB8K5WoeHh4ZPusSEBCQp/7h7aLPKWPy4ucUGBhodwg5IjN5APLmv52r6TPKmLz4OSkPGHnx387V9BllTF78nDKaB/LX6QcREREREbGFCgsREREREck2FRbp8PHxYdSoUVnbSMeN6HPKGH1OeZf+7W5Mn1HG6HPKu/Rvd2P6jDLGHT4nt5u8LSIiIiIiN5+uWIiIiIiISLapsBARERERkWxTYSEiIiIiItmmwkJERERERLJNhYWIiIiIiGSbCgsREREREck2FRYiIiIiIpJtKixERERERCTbVFiIiIiIiEi2qbAQEREREZFsU2EhIiIiIiLZpsJCRERERESyTYWFiIiIiIhkmwoLERERERHJNhUWwvTp03E4HGzatCnd+1u0aEHNmjVT9SUnJ/Ppp5/SokULihUrho+PDxUqVKBv376pnufKc1+5+fr6UrlyZQYMGEBUVFSq53z11Vfp0qULwcHBOBwOXnrppSy/p1dffRWHw5EmbgCn08m0adOoU6cOhQsXJjg4mA4dOvDLL79k+fVE8rrckAd27tzJsGHDqFOnDv7+/pQqVYqOHTteM6b07Nmzh549e1K2bFn8/PyoWrUqY8aM4eLFiynHXLx4kcmTJ9O2bVtKlSqFv78/t99+O1OnTiU5OTnDryWS3+SGPPC/vvjiCxwOB4ULF87Se+rXrx8Oh4NOnTqlue/ChQsMGTKEsmXL4uPjQ7Vq1Zg6dWqWXkcML7sDkLzn0qVLdO/enSVLltCsWTOef/55ihUrxsGDB/nqq6+YMWMGhw8fpmzZsimPGTNmDGFhYVy+fJk1a9YwdepUvvvuO7Zt24afnx8AI0aMICQkhNtvv52lS5dmOb6jR4/y2muvUahQoXTv/89//sO4ceN48MEH6d+/P+fPn+f999+nefPmrF27loYNG2b5tUXcRU7kgY8++oiPP/6Ye++9l/79+xMdHc37779P48aNWbJkCa1bt75uTEeOHKFhw4YEBgYyYMAAihUrxrp16xg1ahSbN29mwYIFAOzfv5+BAwfSqlUrhg4dSkBAAEuXLqV///6sX7+eGTNm5OhnJ5Jf5NTvgSsuXLjAsGHDrvnf8xvZtGkT06dPx9fXN819ycnJtGvXjk2bNhEREUGlSpVS8sC5c+d4/vnns/Sabs8St/fpp59agLVx48Z072/evLlVo0aNlHZERIQFWO+++26aY5OSkqy33nrLOnLkyHWfe+jQoRZgzZw5M6XvwIEDlmVZ1qlTpyzAGjVqVJbeT48ePayWLVumiduyLCsxMdEqWLCgdd9996Xq379/vwVYgwYNytJriuR1uSEPbNq0yYqNjU11zOnTp62SJUtaTZo0ueF7ePXVVy3A2rZtW6r+3r17W4B19uxZy7JMjvnfYyzLsvr27WsB1p49e274WiL5UW7IA//07LPPWlWqVLF69eplFSpUKFPvxel0WuHh4dYjjzxilS9f3urYsWOq+7/66isLsD7++ONU/ffee6/l6+trRUVFZer1xNBQKMmUo0eP8v7779OmTRuGDBmS5n5PT0+eeeaZVGcn0tOyZUsADhw4kNJXoUKFbMe3evVqvv76a8aPH5/u/YmJiVy6dIng4OBU/UFBQXh4eFCwYMFsxyCS3+VUHqhXr16a4Q7FixenadOm7Nix44ZxxcTEAKT5fpcqVQoPDw+8vb0BKFGiBDVq1Ejz+HvuuQcgQ68l4u5y8vcAmGGN7777LuPGjcPLK/MDbP773/+ybds2Xn311XTv//nnnwHo2bNnqv6ePXty+fLllCuckjkqLCRFdHQ0p0+fTnNLTExMOeb7778nKSmJhx56KFuvtW/fPsD8aLhZkpOTGThwII899hi33XZbuscULFiQRo0aMX36dL744gsOHz7Mn3/+ycMPP0zRokV5/PHHb1o8InlRbswDkZGRlChR4obP16JFCwAeffRRtmzZwpEjR5g9ezZTp05l0KBBNxxOERkZCZCh1xLJz3JDHhgyZAh33XUXd999d6afMzY2lmeffZbnn3+ekJCQdI+Jj4/H09Mz5YTDFVeGY23evDnTryuaYyH/cL3xy1fO7l05k3etH+7XciVJXb58mbVr1zJmzBgKFiyY7mSqrJo2bRqHDh3ixx9/vO5xn3/+OT169ODBBx9M6bvllltYu3Ytt9xyy02LRyQvym154Oeff2bdunWMGDHihs/fvn17Xn75ZV577TUWLlyY0v/CCy/wyiuvXPexCQkJjB8/nrCwMBo0aJDxNyWSD9mdB7799lt++OEH/vjjjyxET8pzPv3009c8pkqVKiQnJ7N+/XruvPPOlP4rVzKOHTuWpdd2dyosJMXkyZOpXLlymv5///vfKSulXBlq4O/vn6nn/t8kVb58eb744gvKlCmTxWhTO3PmDCNHjuTFF1+kZMmS1z3W39+fGjVqEB4eTqtWrYiMjOT111+nW7du/PzzzzpbKW4tN+WBkydP8q9//YuwsDCGDRuWodeoUKECzZo1495776V48eJ8++23vPbaa4SEhDBgwIBrPm7AgAFs376db7/9NkvDLkTyEzvzQEJCAk8//TRPPvkk1atXz3Tsu3fv5r333uPLL7/Ex8fnmsf961//YsyYMTzyyCNMnjyZSpUq8cMPPzBlyhTATEyXzFP2lBQNGzakfv36afqLFi3K6dOnAQgICADMZcbMuJKkvLy8CA4OpkqVKnh43LyReCNGjKBYsWIMHDjwusclJSXRunVrWrRowcSJE1P6W7duTY0aNXjrrbd44403blpcInlNbskDcXFxdOrUidjYWNasWZOhpSZnzZrF448/zu7du1PGdXfv3h2n08mzzz7LAw88kO6wq7feeosPP/yQl19+OUvDLkTyGzvzwLvvvsvp06cZPXp0lmIfPHgwd9xxB/fee+91jwsJCWHhwoU89NBDtG3bFjDvaeLEifTp0yfLy9u6OxUWkilVq1YFYOvWrdSpUyfDj7tWkroZ9uzZwwcffMD48eM5fvx4Sv/ly5dJTEzk4MGDBAQEUKxYMVavXs22bdsYN25cqueoVKkS1apVY+3atTkSo0h+ktN5ICEhge7du/Pnn3+ydOnSdPejSc+UKVO4/fbb00wW7dKlC9OnT+f3339Pc7Z0+vTpPPvsszz55JMZGm4lIkZO5IHo6GheeeUV+vfvT0xMTMpVkQsXLmBZFgcPHsTPz4+goKB0H//TTz+xZMkSvvnmGw4ePJjSn5SUxKVLlzh48CDFihVLKYqaNWvG/v372bp1K3FxcdSuXTvld0R6V2zkxjR5WzKlQ4cOeHp68vnnn9sdSopjx47hdDoZNGgQYWFhKbdff/2V3bt3ExYWxpgxYwBSNuFJbxOsxMREkpKSXBq7SF6Uk3nA6XTSu3dvli9fzsyZM2nevHmGHxsVFXXN7zaQ5vu9YMECHnvsMbp3787kyZOzF7iIm8mJPHDu3DkuXLjAm2++meq/53PnzuXixYuEhYVdd5GVw4cPA+ZK5T8ff+zYMX766SfCwsL45JNPUj3G09OTOnXq0KRJEwoXLpwyT/NG++ZI+lRYSKaEhobSr18/fvjhh1RDia5wOp288847HD16NMdiOH36NDt37kzZSbdmzZrMmzcvza1GjRqUK1eOefPm8eijjwJXz0DMmjUr1XP+9ttv7Nq1i9tvvz3H4hbJL3IyDwwcOJDZs2czZcoUunfvfs3j/jcPgPl+//777+zevTvVsV9++SUeHh7UqlUrpW/16tX07NmTZs2a8cUXX9zUoZki7iAn8kBQUFC6/z2/66678PX1Zd68eQwfPjzl+BMnTrBz586UkwctW7ZM9/ElS5akfv36zJs3j86dO1/z9U+dOsUbb7xBrVq1VFhkkYZCSaa988477Nu3j0GDBvHNN9/QqVMnihYtyuHDh5kzZw47d+5Msy50Rvz3v//l0KFDKT8UVq9enbKSy0MPPUT58uUBmDRpEqNHj2bFihW0aNGCEiVK0K1btzTPd2Uvi3/eV69ePdq0acOMGTOIiYmhbdu2nDhxgokTJ1KwYMF01+IWkbRyIg+MHz+eKVOmEB4ejp+fX5ozoffcc0/KkrH/mwcA/vOf//D999/TtGlTBgwYQPHixVm8eDHff/89jz32GKVLlwbg0KFDdOnSBYfDwX333cecOXNSvU6tWrVSFSEikr6bnQf8/PzS/e/5/Pnz2bBhQ5r7hg8fzowZMzhw4AAVKlSgXLlylCtXLs3jhwwZQnBwcJrHN2/enPDwcCpWrEhkZCQffPABFy5cYPHixTrZkEUqLCTT/Pz8+P7775k+fTozZszg5Zdf5uLFi5QuXZqWLVtmebWnjz/+mFWrVqW0V6xYwYoVKwC48847UwqL7FqwYAFvv/02s2bNYsmSJXh7e9O0aVNefvllqlSpclNeQyS/y4k8sGXLFgDWrVvHunXr0tx/4MCB6+5F0axZM3755RdeeuklpkyZwpkzZwgLC+PVV19NtarUgQMHiI6OBiAiIiLN84waNUqFhUgG5NTvAVepV68ec+bM4dixYwQEBNCmTRtefvllLT2fDQ7Lsiy7gxARERERkbxN13lERERERCTbVFiIiIiIiEi2qbAQEREREZFsU2EhIiIiIiLZpsJCRERERESyTYWFiIiIiIhkmwoLERERERHJNrfbIM/pdHL8+HH8/f1xOBx2hyOSa1mWRWxsLKVLl853O5AqD4hkjPKAiGQmD7hdYXH8+HFCQ0PtDkMkzzhy5Ahly5a1O4ybSnlAJHOUB0QkI3nA7QoLf39/wHw4AQEBNkcj4nrJTovNB89x6sJlShb2pV6Fonh6pD1bFxMTQ2hoaMp3Jj9RHhB3pzygPCCSE3nA7QqLK5c7AwIClEjE7SzZdoLRi7ZzIvpySl+pQF9Gda5O+5ql0n1MfhwioDwg7kx5wFAeEHeWU3kgfw2YFJFrWrLtBE99/luqJAIQGX2Zpz7/jSXbTtgUmYi4ivKAiORkHlBhIeIGkp0Woxdtx0rnvit9oxdtJ9mZ3hEikh8oD4hITucBFRYibmDDgbNpzkz8kwWciL7MhgNnXReUiLiU8oCI5HQeUGEh4gZOxl47iWTlOBHJe5QHRCSn84AKC5H8bvtCGm1/NUOHBvn75nAwImKLPT8S/ueLkO4AiNSUB0TyqYNrabJlGJ4k3/DQrOYBt1sVSsRtxEbBd8/AjoWEAPcVLs/cCzXT/VnhAEICfWkYVszFQYpIjrp4FpYMhz9nEQT0LVyG6RcaKw+IuJPLMfDjKNj0CSWA/oWDmXShVY7kAV2xEMmPtsyEyQ1gx0Lw8IKmz9C2cw/AJI1/utIe1bl6uutXi0ge9dd8mNQA/pwFOKBxf+7o1AdQHhBxG3uWwZTGsOkT067bh9p3PwHkTB7QFQuR/Oj473A5GkrVga6TIOQ22gJTPX3SrFsdcoN1q0Ukj4r6Cy6ehpJVocskCG1AG2CqVyHlARF3cXo3xByDomHQZQKENaM1MNU7IEfygAoLkfzAmWwKCb+/L122GgnFK0L9R8Hz6te8fc1StKkewoYDZzkZe5kgf3O5U2coRfIBy4KLZ6BQCdNu9ozJCfUfAS+flMOUB0TyMcuCuNNQuKRpN3oScEC9h8HbL+WwnMoDKixE8rqTO2DBAPDyhT6LwMMDfPyh0RPpHu7p4SD81uIuDlJEctSZfbBosDnB0G+FOaHg5QONn0r3cOUBkXwo+igsftrkg6fWQoGC4OEJ4f3TPTwn8oAKC5G8KikB1oyD1W+DMxF8AuDMHihZxe7IRMRVkpNg/WRY8RokXQavghD5B5SpZ3dkIuIqTids+hh+fAkSLoCnNxzZALc0d3koKixE8qKjm8xVilM7TLtyB+g0DgJK2xuXiLhO5FaTB05sMe2w5tD5PSgWZmtYIuJCp/fAwoFweJ1phzaCLhNtO8mowkIkL0m8BMtfhvVTAAv8SsDdb0KN7uDQ+GgRt5CcCKvegDXvgjMJfAOh3WtQp5fygIi7cCbD2vdg5euQHA8FCkHrl6DBY2ZItE1sXW529erVdO7cmdKlS+NwOJg/f/4NH7Ny5Urq1q2Lj48PFStWZPr06Tkep0iu4fCE/SsBC2r1hAEboea9+jEh4k4cnnDgZ1NUVOsMERvg9geVB0TcicMDDv1iioqKrSFiPTR63NaiAmy+YhEXF0ft2rV55JFH6N69+w2PP3DgAB07duTJJ5/kiy++YPny5Tz22GOUKlWKdu3auSBiERtcOmfORHh5m1u3yRB3Biq1tjsyEXGV+FhTUHj7mR8OXSaaoZDVu9odmYi4SuIlc8XSN8CcSOj0LhxaC7V65JoTC7YWFh06dKBDhw4ZPn7atGmEhYXxzjvvAFCtWjXWrFnDu+++q8JC8qftC83u2Q36QfP/mL7St9sbk4i41p4fYfEQU0S0e9X0laxsbiLiHg6uNXMpyodD18mmr0goFOlpb1z/I0/tvL1u3Tpat059lrZdu3asW7fOpohEckhsFMx+CL56CC5Ewfb5ZvUXEXEfF8/CN0/AF/dC9BHY+a05Yyki7uNyjFlCdvrdcHYf7F1uRjLkUnlq8nZkZCTBwcGp+oKDg4mJieHSpUsULFgwzWPi4+OJj49PacfExOR4nCJZZlmw5QtY+rxZj97DC5oMhmbDUm10JyL5mGXBX/Pgu/+YnbNxmE2uWr1o1qUXEfewawl8O9TsnA1Qtze0eRkKFrE1rOvJ979Uxo4dy+jRo+0OQ+TGzh82lzn3rzTtUnWg6yQIuc3OqETElWKjzNnJXd+adsmq0GUShDawNy4RcZ2LZ82JhW1fm3bRMOgyAcKa2RtXBuSpoVAhISFERUWl6ouKiiIgICDdqxUAw4cPJzo6OuV25MgRV4QqknlJCXB4vdlBu80YeGy5igoRd2Mlw8GfwaMANH8OnlitokLEHR1YZVZ+umMgPPVLnigqII9dsQgPD+e7775L1bds2TLCw8Ov+RgfHx98fHxyOjSRrLlwCgqXNH+XqAjdpkKp2lD8VnvjEhHX+WceCCgN90wzZyiDq9sbl4i4zoVTUKiEWd3Jr5jJAwWLQpl6dkeWKbZesbhw4QJbtmxhy5YtgFlOdsuWLRw+fBgwVxt69+6dcvyTTz7J/v37GTZsGDt37mTKlCl89dVXPP3003aEL5J1SQlmU5t3a8CRDVf7a3ZXUSHiLpKTzAZX428zKz9dUbWjigoRd+F0woYPYUId2Db3an/F1nmuqACbC4tNmzZx++23c/vtZvnMoUOHcvvttzNy5EgATpw4kVJkAISFhfHtt9+ybNkyateuzTvvvMNHH32kpWYlbzm6Cd5vBivHmo1t/ppvd0Qi4mqRW+GjVrBsJCRdgr++sTsiEXG103tgekezrHzCBdiW9/OArUOhWrRogWVZ17w/vV21W7Rowe+//56DUYnkkIQ4+OlVWD8FsMCvBNz9FtS4x+7IRMRVkuJh9Vuw5l2zc7ZvILR7Der0sjsyEXGV5ET4ZQKsfMOcYCxQCFq/BA0eszuybMtTcyxE8qwDq2HBADh/yLRr9YD2r5txlCLiHo5shAX94fRu067aCTq+A/4h9sYlIq4TuRXmP2X+F+DWVtB5PBQpZ2tYN4sKCxFXOH/YFBWBodBpPFRqfcOHiEg+cyHSFBWFgqDj22YnbRFxL5fOmaKiYFFoNxZq9zQTtvMJFRYiOeWfK73U6WWGQtX5F/j42xuXiLjOP/NAtc7mCkWN7rpaKeJO/pkHwppB5wlQpQMUDrI3rhyQp/axEMkTYqPgq95mgvblaNPncECjJ1RUiLiLi2dh3pMwuQFcOHm1v8FjKipE3MXlGFg81Kz4dO7Q1f56ffJlUQEqLERuHsuC37+AyQ1h+wKIOwkH19odlYi4kmWZlV0mN4Q/voRL52HfT3ZHJSKutnspTGkMmz42Kz7t+cHuiFxChYXIzXDuIPz3HjMx8/J5s8ldvxVQ9W67I3MLr7/+Og6HgyFDhtgdirizmOMw61/wdV+IOwUlq8Kjy8wYahFxD3Gn4etHYeb9EHMMilaAPougYT+7I3MJzbEQyQ7Lgl+nwfIxkHgRvHyhxXAIHwCe+nq5wsaNG3n//fepVauW3aGIO9s8A34YAfEx4FEAmv4bmg4FLx+7IxMRV9n6NXw/DC6eAYcHhEdAi+fB28/uyFxGv3xEssPhMBveJV6E8ndClwnaOduFLly4QK9evfjwww955ZVX7A5H3NmJP0xRUaYedJmknbNF3NHJ7aaoCKoBXSfmyZ2zs0uFhUhmJSVAYpxZKg6gwxtmlYfbHwIPjS50pYiICDp27Ejr1q1VWIhrJSeZQuLKROzWL5liol5f8PC0NTQRcRGnEy6dhUIlTLvZMCgcbPKAl7e9sdlEhYVIZhzdZDa6K1ERenxu+gqVMCs8iEvNmjWL3377jY0bN97w2Pj4eOLj41PaMTExORma5HeRW00e8PE3Y6cdDvANyBe75opIBp3eAwsHmRELjy03w58L+JoVIN2YTq+KZERCHCx5Hj5qDad2wKF1EHPC7qjc1pEjRxg8eDBffPEFvr6+Nzx+7NixBAYGptxCQ0NdEKXkO4mXYfnL8EELOLEFTvwJZ/bZHVW+tXr1ajp37kzp0qVxOBzMnz8/1f2WZTFy5EhKlSpFwYIFad26NXv27LEnWHEfyYnw8zswtQkc/sUUGFHb7I4q11BhIXIj+1fClHBYPxmwoFZPGLARAkrZHZnb2rx5MydPnqRu3bp4eXnh5eXFqlWrmDBhAl5eXiQnJ6c6fvjw4URHR6fcjhw5YlPkkmcdXg/vN4Wf3wZnktnsbsAGc/VSckRcXBy1a9dm8uTJ6d7/5ptvMmHCBKZNm8avv/5KoUKFaNeuHZcvX3ZxpOI2jm+BD+8yC7Ykx8OtrSBiPZSuY3dkuYaGQolcy+UYWDocfv97yFNAWeg8Hiq1sTUsgVatWrF169ZUfX379qVq1ao8++yzeHqmHuPu4+ODj49W55EsSLgIP74EGz4ALCgUBB3fhupd7Y4s3+vQoQMdOnRI9z7Lshg/fjwjRoyga1fzb/HZZ58RHBzM/Pnz6dlTS/zKTZSUACtfg7UTwEoG3yLQ/nWzlLTDYXd0uYoKC5FrcXjA/tWAw6w/3Wqkds7OJfz9/alZs2aqvkKFClG8ePE0/SLZ4uEJB1YDFtR5ENq+rJ2zc4EDBw4QGRlJ69atU/oCAwNp1KgR69atS7ew0FwryTIPTzi4xhQVNe6BDm/m252zs0uFhcg/xZ2GgsXM6k4+heGeaabAKB9ud2Qi4ioXz5qTCJ4FzD4U3aaYjS9vbWl3ZPK3yMhIAIKDg1P1BwcHp9z3v8aOHcvo0aNzPDbJJy7HmBxQoKApLLpMgjN7oVonuyPL1TJUWCxcuDDTT9ymTRsKFiyY6ceJ2MKyYMtMM/Sp1Sho8Kjpr9DE3rgkw1auXGl3CJLXWRb8Nc9scNX4KbPJHUCZuvbGJTfF8OHDGTp0aEo7JiZGCzlI+nYvhcVPw233QZsxpi+oqrnJdWWosOjWrVumntThcLBnzx5uueWWrMQk4lrnDsKiIbB/hWn/NQ/qP6JxkyLuJOY4fPtv2PWdaW9fAE2GaE+KXCokJASAqKgoSpW6upBGVFQUderUSfcxmmslNxR3GpY8B1vnmPbOb83O2QVuvPqgGBleFSoyMhKn05mhm5+f+2xdLnmYMxnWTzUrPu1fAV6+ZpOrh+arqBBxF5YFm6fD5EamqPAoAM2fhUeXqajIxcLCwggJCWH58uUpfTExMfz666+Eh2voqmSSZcGfc2ByQ1NUODwgfAA88bOKikzK0BWLPn36ZGpY04MPPkhAQECWgxLJcad2w4L+cPTvzdXK3wldJkDxW+2NS0Rc59xBs9HdwZ9Nu3Rd6DoJgmvYGpYYFy5cYO/evSntAwcOsGXLFooVK0a5cuUYMmQIr7zyCpUqVSIsLIwXX3yR0qVLZ3qUhbi5mBOwaDDsWWraQTWg60QoU8/euPKoDBUWn376aaaedOrUqVkKRsRlEi7Asc3gEwBtRkPdh82EbRFxH8mJcGQDeBWEliPMvApdpcg1Nm3axF133ZXSvjI/ok+fPkyfPp1hw4YRFxfH448/zvnz57nzzjtZsmRJhjbNFElhJcOhX8DTG5r9xwyB9PK2O6o8y2FZlpWZBzzyyCO89957+PunXnYzLi6OgQMH8sknn9zUAG+2mJgYAgMDiY6O1lUVd3PhZOrl4bZ8CWHNILCMfTHlYvn5u5Kf35vcwP/mgW1zzZWKYmH2xZSL5efvSn5+b3ID/5sHdiyG4hU1OfsaMvNdyfQp2hkzZnDp0qU0/ZcuXeKzzz7L7NOJ5LyEOFjyPIyvBSd3Xu2v84CKChF3kRQPP70C79aEIxuv9te8V0WFiLtIToSfx8H422DfT1f7q3VSUXGTZHgfi5iYGCzLwrIsYmNjU11qTE5O5rvvviMoSJuFSC6zfyUsHATnD5n2zsVKHiLu5vCvsHAgnN5l2jsWQmgDe2MSEdc6vgUWDoDIrab91zztTZMDMlxYFClSBIfDgcPhoHLlymnudzgc2nhGco9L5+CHEfD756YdUBY6j4dKbWwNS0RcKP4CLB8DGz4ALCgUBB3fhupd7Y5MRFwl8RKsegPWTjDzKQoWhXZjoXba3dkl+zJcWKxYsQLLsmjZsiVz586lWLFiKfd5e3tTvnx5SpcunSNBimTKzm/NxjYXogAHNOwHrUaanXRFxD3sW2GuVkYfNu06vaDtK+BX7PqPE5H84/CvZgXIM3+vLla9G9z9Vur5FXJTZbiwaN68OWCWewsNDcVDK+hIbnVmrykqilcyS0eWa2x3RCLiaucPm6KiSDno/J6GPIi4owuR5jeBfyno+A5U7Wh3RPlehguLK8qXL8+5c+f4+OOP2bFjBwDVq1enb9++qa5iiLiMZUHcqatnIBpHmM3u6vbRxjYi7uJ/80Dd3mbCdp1/gU9he2MTEdf554pP1buagqLmfVCwiK1huYtMX3ZYvXo1FSpUYMKECZw7d45z584xYcIEwsLCWL16dU7EKHJt5w7Bf++BT++GxMumz9MLGj2hokLEXcScgNkPwgct4HKM6XM4oNHjKipE3EXcaZj7GExuZP6+osFjKipcKNNXLCIiIujRowdTp07F09NsJJScnEz//v2JiIhg69atNz1IkTScyWZC5vIxkHjRXKE4thkqNLE7MhFxFcuC3z6DH16E+GjwKACH10PltnZHJiKuYlmw9WtY8ixcPAMOD7Mi5G332R2ZW8p0YbF3716+/vrrlKICwNPTk6FDh2ofC3GNkztgwQA4tsm0yzeBzhOgREV74xIR1zmzDxYNhoM/m3bpumZOVXANe+MSEdeJPgqLh8KepaYdVAO6ToQy9eyNy41lurCoW7cuO3bsoEqVKqn6d+zYQe3atW9aYCJpOJNh9Vuw+m1wJoK3P7QdA3UfBi0mIOIeLAt+mQgrXoOkS+BVEFqOgMZPgYfnjR8vIvnDxo9h2ShIiAVPb2j2H2gyBLy87Y7MrWW6sBg0aBCDBw9m7969NG5sVttZv349kydP5vXXX+fPP/9MObZWrVo3L1IRhwcc+dUUFZXbQ8dx2jlbxN04HHD8N1NUhDUzVyu1c7aI+4n80xQVZRtCl4na/DaXcFiWZWXmATdaZtbhcGBZFg6Hg+Tk5GwFlxNiYmIIDAwkOjqagIAAu8ORG0mIA8t5dQ+Kc4fg6Eaoea/5gSE5Jj9/V/Lze8uXkuLNXKqCRU37wknY84PZm0J5IEfl5+9Kfn5v+VJyIsTHXt2L5nI0bJtrVoDU1coclZnvSqavWBw4cCDLgYlkyv6VZoOrW1pAlwmmr2h5cxMR93D4V1g4EIKqwf0zTF/hILj9QXvjEhHXOfGHmVvpVwwemm9OKPgGQv1H7I5M/keW9rEQyVGXzsEPI+D3z01730/mzIRvoL1xiYjrxF8wq75t+ACwTF6IjQL/YLsjExFXSbwEq96AtRPASgbfInDuABS7xe7I5BoyXVgA7Nq1i4kTJ6ZskFetWjUGDhyYZkK3SKZtXwjfPWN2zgZo0A9aj7o6FEpE8r+9P8Kip83O2WCGPLV95eoQCBHJ/w6uNVcrz+4z7erd4O63rm5+J7lSpguLuXPn0rNnT+rXr094eDhgJm/XrFmTWbNmce+99970IMUNxJ2GxU/DjoWmXbySmYxVPtzeuETEdS6dhyXPwR9fmnaRctBpPFRsZWdUIuJKCXFmb5pNH5t24RCze3a1TvbGJRmS6cJi2LBhDB8+nDFjxqTqHzVqFMOGDVNhIVnkgENrweEJdw6BZsO0c7aIu/HwhAM/Aw6zfOxdL2jnbBF34+F1dX+aun2gzRjtnJ2HZLqwOHHiBL17907T/+CDD/LWW2/dlKDETcRGmUuaDgcUKg73fGDapbRMsYjbuHAKCpUwecDHH+6ZBl6+ENrA7shExFXizph5lJ5e4OUD3aZBwgW4pbndkUkmZXpXsRYtWvDzzz+n6V+zZg1Nmza9KUFJPudMhvVTYUId2D7/an+l1ioqRNyFZcHmGTCxHvw242p/WFMVFSLuwrLgzzkwuQGsm3S1v2w9FRV5VKavWHTp0oVnn32WzZs3p9ogb86cOYwePZqFCxemOlYklZM7YeEAsxcFwPYFUOMee2MSEdc6ux8WDYYDq037r/lmyIP2pBBxH9FHYfFQ2LPUtHcshDsGak+KPO6mb5CX8sSZ2CBv8uTJvPXWW0RGRlK7dm0mTpxIw4YN0z12+vTp9O3bN1Wfj48Ply9fztBraUMcmyQlwJp3YfVbZudsb39oMxrq9YUM/n9KXCs/f1fy83vL1ZKT4Nep8NOrZudsr4LQcoSZT6EfE7lSfv6u5Of3lqs5nbD5E1j2ktk529Mbmv0HmgwBL2+7o5N05OgGeU6nM8uBpWf27NkMHTqUadOm0ahRI8aPH0+7du3YtWsXQUHpLykWEBDArl27UtoOneXK3Y7/DvP7w8ntpl25PXQcB4Fl7I1LRFzn5E6Y/xQc/820w5pB5wlQLMzeuETEdc7uh/kRcPgX0y7b0KwAGVTV3rjkpsnSPhY307hx4+jXr1/KVYhp06bx7bff8sknn/Dcc8+l+xiHw0FISIgrw5TsuHTeFBV+JaDDG1DzXg15EHE3CXFwYgv4BEK7V+D2h5QHRNxNUgIc2wQFCkGrkdCwn65W5jMZGoMyYcKEDA81AlMcxMbG3vC4hIQENm/eTOvWra8G5OFB69atWbdu3TUfd+HCBcqXL09oaChdu3blr7/+ynBs4iKxUVf/vvUuc0YiYgPcdp9+TIi4i3/mgbL1oOsUiPgV6vZWHhBxF//MA0FVzcpv/ddB4ydVVORDGSosnn766QwVClcMGzaMU6dO3fC406dPk5ycTHBwcKr+4OBgIiMj031MlSpV+OSTT1iwYAGff/45TqeTO+64g6NHj6Z7fHx8PDExMalukoMunYMFEWall/NHrvbX7W2WlBWR/C/+Anw3DN6rDad2X+2v8wAElLIvLhFxncRL8ONLML4mHNt8tb/mvVC0vG1hSc7K0FAoy7Jo1aoVXl4ZGzl16dKlbAV1PeHh4Sk7fgPccccdVKtWjffff5+XX345zfFjx45l9OjRORaP/MOORfDtv+HC32cn9v4I9fte/zEikr/s/REWPQ3Rh0179/dQsrK9MYmIax1cCwsHwtl9pr3zWyhTz96YxCUyVCmMGjUqU0/atWtXihUrdsPjSpQogaenJ1FRUan6o6KiMjyHokCBAtx+++3s3bs33fuHDx/O0KFDU9oxMTGEhoZm6Lklg2Kj4LtnzFJxAMUrmaFP5cOv/zgRyT8unoWlz8MfX5p2YDnoPB4qtrI1LBFxocsx5irFpo9Nu3AIdHwHqnWyNSxxnRwpLDLK29ubevXqsXz5crp16waYVaeWL1/OgAEDMvQcycnJbN26lbvvvjvd+318fPDx8blZIcv/2vIlLHkOLp8Hhyc0GQzNn4UCvnZHJiKusn2BuVoZdwpwQKMnzTKyPoXtjkxEXGXPj7BoEMQcM+26vaHNy1CwiK1hiWvZvoHA0KFD+fDDD5kxYwY7duzgqaeeIi4uLmWVqN69ezN8+PCU48eMGcMPP/zA/v37+e2333jwwQc5dOgQjz32mF1vwb2d2mmKilK14fGV0HqUigrJcWPHjqVBgwb4+/sTFBREt27dUi1BLS52Zp8pKkpWhUd/gA6vq6gQcTfRh01RUbQC9F5oRi6oqHA7ti8326NHD06dOsXIkSOJjIykTp06LFmyJGVC9+HDh1Ntynfu3Dn69etHZGQkRYsWpV69evzyyy9Ur17drrfgXpzJZshD4ZKm3eI5CCxrNrrztP3/TuImVq1aRUREBA0aNCApKYnnn3+etm3bsn37dgoVKmR3ePmfZZlCovDfew3dMRC8C0O9PuClK8QibsGy4MJJ8P97AZ66D5vfCHV6gbefraGJfTK983Zep502s+HkTlg4wCSTR3/QMnH5XF76rpw6dYqgoCBWrVpFs2bNbnh8Xnpvuc7Z/bBwkCksnlitQiKfy83flZdeeinN4ixVqlRh586dGXp8bn5vuV70UTP8Meov6L9eVyjzuRzdeVvcUFICrHkXVr8FzkTw9oeTOyCkpt2RiQAQHR0NkKFFIySLkpPg16nw06uQdAm8CsLxLVCukd2RiRurUaMGP/74Y0o7o6tXShY5nbD5E1j2EiTEgqc3HFkPFVvf8KHiHrL8DTx9+jTe3t6q8vO7o5vNVYqT2027cnvoOA4Cy9gbl8jfnE4nQ4YMoUmTJtSsmX6xGx8fT3x8fEpb+9lkUtRfsGAAHP/NtCs0hS4ToNgt9sYlbs/LyyvDq0hKNp3ea5aQPfyLaZdtaOZRBFW1Ny7JVTI1efv8+fNERERQokQJgoODKVq0KCEhIQwfPpyLFy/mVIxih8TLsPQF+Li1KSr8isO9H8MDs1RUSK4SERHBtm3bmDVr1jWPGTt2LIGBgSk3LTmdQclJ5grF+81MUeETaH5I9FmkokJyhT179lC6dGluueUWevXqxeHDh+0OKf+xLPh5HEy9wxQVBQpB+zfgkSUqKiSNDF+xOHv2LOHh4Rw7doxevXpRrVo1ALZv387EiRNZtmwZa9as4c8//2T9+vUMGjQox4IWF/DwgkNrwXLCbfdD+9e1c7bkOgMGDGDx4sWsXr2asmXLXvM47WeTRR6eZpiDMwmqdoK739bO2ZJrNGrUiOnTp1OlShVOnDjB6NGjadq0Kdu2bcPf3z/N8bpymUUOBxz/HZLj4daW0Gm8ds6Wa8pwYTFmzBi8vb3Zt29fyopN/7yvbdu2PPTQQ/zwww9MmDDhpgcqLnDpPHj5muViPb2g62SIPgaV29odmUgqlmUxcOBA5s2bx8qVKwkLC7vu8drPJhPiLwAW+PibHxSdJ8CJLVC9m2mL5BIdOnRI+btWrVo0atSI8uXL89VXX/Hoo4+mOX7s2LFpJnvLNSRehqTLV5eLvfttqHI31O6pPCDXleGhUPPnz+ftt99OU1QAhISE8OabbzJ37lyGDh1Knz59bmqQ4gI7FsHkRrDqjat9wTVUVEiuFBERweeff87MmTPx9/cnMjKSyMhILl26ZHdoedve5TAlHJaNvNpXLAxq3KMfE5LrFSlShMqVK7N379507x8+fDjR0dEptyNHjrg4wjzi0C8wrQl8e/UqL/7BUOcB5QG5oQwXFidOnKBGjRrXvL9mzZp4eHjk2C7dkkNio+Cr3jD7QbgQCbu+N6tAieRiU6dOJTo6mhYtWlCqVKmU2+zZs+0OLW+6eBbmPQWfdzebXO1dDvGxdkclkikXLlxg3759lCqV/nA9Hx8fAgICUt3kHy7HwOKh8GkHOLMXDq6FuNN2RyV5TIaHQpUoUYKDBw9ecxzzgQMHCAoKummBSQ6zLNgyE5Y+b3bOdnhCk8HQ/Fnw8rY7OpHrcrPtd3KOZcH2+fDdf8y+FDig0ZPQcoTWpZdc75lnnqFz586UL1+e48ePM2rUKDw9PXnggQfsDi3v2b0UFj9tds4GqNsH2ozRztmSaRkuLNq1a8cLL7zAsmXL8PZO/cMzPj6eF198kfbt29/0ACUHRB81S0fuX2HapWpDl0lQqpa9cYmI61w4aX5I7Fxs2iWqQNdJENrQ3rhEMujo0aM88MADnDlzhpIlS3LnnXeyfv16SpYsaXdoecelc/DdMNj6lWkXrWDmVd3S3NawJO/K1OTt+vXrU6lSJSIiIqhatSqWZbFjxw6mTJlCfHw8n332WU7GKjeL5YQjG8xE7bueh8YRZrK2iLgRh1n5zcMLmv7b3LSLtuQh11tiWjLI4WnygMMDwiOgxfPg7Wd3VJKHZfjXZNmyZVm3bh39+/dn+PDhKUMRHA4Hbdq0YdKkSZQrVy7HApVsio0E/783ESpSDrp/AEHVoPit9sYlIq7zzzxQuCR0/xACSpuFGkTEPcRGQeEgMxHbNwDumQbehaBMPbsjk3wgU6epw8LC+P777zl37hx79uwBoGLFihQrVixHgpObICkB1o6H1W9BrzlwSwvTX62TnVGJiCslJ8GvU81md90/gOpdTH+lNvbGJSKu43TC5k9h2ShoPxbqPmT6w5rZG5fkK1ka/1K0aFEaNtQ43Fzv6GZYOMDsnA1mSdkrhYWIuIeov8ycquO/mfaORVcLCxFxD6f3wqJBZtgTwPYFcPuDWj5WbjoNrM+PEuJgxWuwfoqZT+FXHDq8CTXvtTsyEXGVpHhY/TasGWd2zvYJhHavwO0P2R2ZiLhKchKsmwgrXzcb3hUoBK1GQsN+KiokR6iwyG8OroEFEXDuoGnfdj+0fx0KFbc1LBFxoaObYH5/OL3LtKt2MjvnBqS/vr+I5ENRf8H8p+DEH6Z9a0voNB6Klrc1LMnfVFjkNxeiTFERUBY6j9cYahF3dPm8KSoKlYS734Lq3XR2UsTdJMTBiT/Bt4iZU1FbO2dLzlNhkR/8c6WXGt3h0nmodT/4+Nsaloi40D/zQMXW0GWiuVLhp8U1RNzGP/NAaEPoNhUqtjKrQIm4gIfdAUg2xEbBV71hahO4eNb0ORzQ4FEVFSLu4uJZmPcUTGoA0ceu9tftraJCxF1cjoFv/w3v1TETta+o84CKCnEpFRZ5kWXB71/A5IZmZYdL5+DAarujEhFXsiz4a57JA3/MhPhY2PeT3VGJiKvt/gGmNIaNH0HSJdiz1O6IxI1pKFRec+4gLBoC+1eYdqna0GUSlKplZ1Qi4koxJ+C7Z2DnYtMuUQW6TjJDH0TEPcSdhiXPwdY5pl20AnSeALc0tzUscW8qLPKS9dNg+WhIvAhevtDiOQgfCJ76ZxRxG7/9F5a+APHR4OEFTf9tbl4+dkcmIq6y7RtzcuHiGXB4QOP+cNcL4O1nd2Ti5vSLNC+J2maKivJNzMTM4rfaHZGIuNrpXaaoKF3X5IGQmnZHJCKudnafKSqCakDXiVCmnt0RiQAqLHK3pAQzbvrKHhRtXzFDHeo8CB6aHiPiFpKTzDyqwiVNu8XzUDQM6j0MHp62hiYiLuJ0Qtwp8A827SZDzDKydfuAl7edkYmkol+nudWxzfBBc/imn5mkCVCwiFnpRUWFiHuI+gs+bgOz/gXOZNPn7WdWflNRIeIeTu+FGZ3gv93MCUcAzwJm92wVFZLL6IpFbpMQByteg/VTwHKaDe+ij0CRcnZHJiKukhQPq9+GNePAmQQ+gXB6DwRVtTsyEXGV5CRYNxFWjIXkeChQCCL/hLL17Y5M5JpUWOQm+1fBokFm5SeAWj2g3dirQ6FEJP87sgEWDDBzKcBscnf32xBQyt64RMR1TvwJCwfAiT9M+9aW0Gk8FC1va1giN6LCIjeIj4Wlz8Nvn5l2QFno9C5UbmtvXCLiOomX4MfR8Os0wIJCJU1BUb2r2fhSRPK/5EQzamHte2Alm3kU7V+H2j2VByRPUGGRG3h4waFfzN8NHoNWo8A3wN6YRMS1PArA4V8AC2r/C9q9qp2zRdyNwxOObjRFRfVucPdb2jlb8hQVFna5cAoKFjV7UBQoCN2mgTMRyt9hd2Qi4ioXz0IBPyjga3JB1ylmXlXFVnZHJiKucjnG7EXhU9gsztL5PTi5A6p1sjsykUzT8kKuZlnw+xcwqT78OvVqf2gDFRUi7sKy4K95MLkh/Pz21f6QmioqRNzJ7qUwpTH8+NLVvuK3qqiQPEuFhSudOwT/vQcW9IfL52Hnt2ZtahFxHzEnYPaDMOdhsy79riVmXLWIuI+4MzC3H8y8H2KOwb7lZlVIkTxOQ6FcwZkMGz6A5S9DYhx4+UKL4RA+QHtSiLgLyzILNPzwotk528MLmv7b3DwL2B2diLiCZcG2ufD9MLNztsMDGveHu14we9SI5HEqLHLa6T0w/ykzGQugfBPoPAFKVLQ3LhFxnfOHYUEEHFht2qXrQtdJEFzD3rhExHViI2HhINiz1LSDakDXiVCmnr1xidxEKixyWnIiHN8C3v7QdgzUfVhXKUTcjWXB0U3gVRBajoDGT2nnbBF34/CAI7+aFeCaD4MmQ7RztuQ7KixyQmwk+IeYv4Orwz3ToFw4BJaxNy4RcZ1/5oGi5aH7B+YKRbFb7I1LRFznn3mgcBB0/xCKlIOgqvbGJZJDdOr8Zkq4CEtfgPG3masUV9x2n4oKEXeRFA8/vWrywME1V/urdVZRIeIukpNgzbvwXm2zUMsVlduqqJB8TVcsbpb9q2DRIDh30LR3L4HSdeyMSERc7cgGWDAATu8y7Z3fQoU77Y1JRFzrxJ+wcACc+MO0dyyGqh3tjUnERVRYZNel87DsRbPaC0BAWej0rjkrISLuIf4C/PQy/Po+YEGhknD321C9q92RiYirJF6GVW/A2vfMztm+RaDda1DnX3ZHJuIyKiyyY9cSWDQYLkSadoN+0HoU+PjbG5eIuM7+lbBgIEQfNu3a/4J2r4JfMVvDEhEXOrLBrAB5Zq9pV+8GHd4E/2BbwxJxNRUW2RF9xBQVxStCl4naOVvEHV04aYqKwHLQ+V2o2NruiETE1S6dN0VF4WDo+I6ZUyXihlRYZIZlwYWoqys81H/U/O/tD0EBX/viEhHXsSyz0ktAKdO+7f8gPhZq9QCfwvbGJiKuE3Piah6o3NbsUVW9CxQsam9cIjbKFatCTZ48mQoVKuDr60ujRo3YsGHDdY+fM2cOVatWxdfXl9tuu43vvvsu54M8dwj+ew983BYS4kyfhwc07KeiQsQmmc0d2RZzAmY/CO83g4tnTZ/DAQ0eVVEhYhOX54G4MzC3H0xuZHLCFfX6qKgQt2d7YTF79myGDh3KqFGj+O2336hduzbt2rXj5MmT6R7/yy+/8MADD/Doo4/y+++/061bN7p168a2bdtyJkBnMqyfClMaw/4V5orF0U0581oikmGZzR3ZYlmweYb5IbFzMVw6C4d+ufmvIyKZ4vI8sPVrmNwAtn4FCbFmjpWIpHBYlmXZGUCjRo1o0KABkyZNAsDpdBIaGsrAgQN57rnn0hzfo0cP4uLiWLx4cUpf48aNqVOnDtOmTbvh68XExBAYGEh0dDQBAQHXP/jkTrNk3NGNpl2+ibnUWaJixt+gSB6Vqe+KDTKbO/4pU+/t7H5YOAgO/mzapeuaOVUhNW/G2xDJ1ZQH/hZ9DL4dapaSBwiqAV0nQpl6N+NtiORqmfmu2HrFIiEhgc2bN9O69dXJjh4eHrRu3Zp169al+5h169alOh6gXbt21zw+S5xOWPUmvN/UFBXe/tBxHPRZrKJCJBfISu7INMuCXybBlDtMUeFVENq+Ao/9qKJCJBdwSR4A2DzdXK3cvQQ8CkCL5+HxlSoqRNJh6+Tt06dPk5ycTHBw6uXYgoOD2blzZ7qPiYyMTPf4yMjIdI+Pj48nPj4+pR0TE3PjwBwOs3N2cgJUbm+KCu2cLZJrZDZ3ZDkPnNwOSZcgrBl0fk87Z4vkIi7JAwCndpthT2UbmquV2jlb5Jry/apQY8eOZfTo0Zl7kMNhlour2R1q3mvaIpJnZSkPgLlCUb6J2eBKeUAkT8tyHmj5ApSsbFaA9PC8+YGJ5CO2DoUqUaIEnp6eREVFpeqPiooiJCQk3ceEhIRk6vjhw4cTHR2dcjty5EjGggsoBbfdpx8TIrlQZnNHlvOAXzG4vZfygEgu5LI84F0I6j2sokIkA2wtLLy9valXrx7Lly9P6XM6nSxfvpzw8PB0HxMeHp7qeIBly5Zd83gfHx8CAgJS3UQkb8ts7lAeEMl/lAdEch/bh0INHTqUPn36UL9+fRo2bMj48eOJi4ujb9++APTu3ZsyZcowduxYAAYPHkzz5s1555136NixI7NmzWLTpk188MEHdr4NEXGxG+UOEcn/lAdEchfbC4sePXpw6tQpRo4cSWRkJHXq1GHJkiUpk7EOHz6Mh8fVCyt33HEHM2fOZMSIETz//PNUqlSJ+fPnU7OmVmkRcSc3yh0ikv8pD4jkLrbvY+Fq0dHRFClShCNHjugyqMh1xMTEEBoayvnz5wkMDLQ7nJtKeUAkY5QHRCQzecD2KxauFhsbC0BoaKjNkYjkDbGxsfnuB4XygEjmKA+ISEbygNtdsXA6nRw/fhx/f38c11jp5UplprMY16fPKWPy6udkWRaxsbGULl061XDE/CAjeQDy7r+dK+kzypi8+jkpD+TdfztX0meUMXn1c8pMHnC7KxYeHh6ULVs2Q8dq1YiM0eeUMXnxc8pvZyivyEwegLz5b+dq+owyJi9+TsoDRl78t3M1fUYZkxc/p4zmgfx1+kFERERERGyhwkJERERERLJNhUU6fHx8GDVqFD4+PnaHkqvpc8oYfU55l/7tbkyfUcboc8q79G93Y/qMMsYdPie3m7wtIiIiIiI3n65YiIiIiIhItqmwEBERERGRbFNhISIiIiIi2abCIh2TJ0+mQoUK+Pr60qhRIzZs2GB3SLYZO3YsDRo0wN/fn6CgILp168auXbtSHXP58mUiIiIoXrw4hQsX5t577yUqKsqmiHOH119/HYfDwZAhQ1L69DnlLcoDVykPZI3yQN6nPJCackHmuVseUGHxP2bPns3QoUMZNWoUv/32G7Vr16Zdu3acPHnS7tBssWrVKiIiIli/fj3Lli0jMTGRtm3bEhcXl3LM008/zaJFi5gzZw6rVq3i+PHjdO/e3cao7bVx40bef/99atWqlapfn1PeoTyQmvJA5ikP5H3KA2kpF2SOW+YBS1Jp2LChFRERkdJOTk62SpcubY0dO9bGqHKPkydPWoC1atUqy7Is6/z581aBAgWsOXPmpByzY8cOC7DWrVtnV5i2iY2NtSpVqmQtW7bMat68uTV48GDLsvQ55TXKA9enPHB9ygP5g/LAjSkXXJu75gFdsfiHhIQENm/eTOvWrVP6PDw8aN26NevWrbMxstwjOjoagGLFigGwefNmEhMTU31mVatWpVy5cm75mUVERNCxY8dUnwfoc8pLlAduTHng+pQH8j7lgYxRLrg2d80DXnYHkJucPn2a5ORkgoODU/UHBwezc+dOm6LKPZxOJ0OGDKFJkybUrFkTgMjISLy9vSlSpEiqY4ODg4mMjLQhSvvMmjWL3377jY0bN6a5T59T3qE8cH3KA9enPJA/KA/cmHLBtblzHlBhIRkWERHBtm3bWLNmjd2h5DpHjhxh8ODBLFu2DF9fX7vDEckxygPXpjwg7kS5IH3ungc0FOofSpQogaenZ5qZ+VFRUYSEhNgUVe4wYMAAFi9ezIoVKyhbtmxKf0hICAkJCZw/fz7V8e72mW3evJmTJ09St25dvLy88PLyYtWqVUyYMAEvLy+Cg4P1OeURygPXpjxwfcoD+YfywPUpF1ybu+cBFRb/4O3tTb169Vi+fHlKn9PpZPny5YSHh9sYmX0sy2LAgAHMmzePn376ibCwsFT316tXjwIFCqT6zHbt2sXhw4fd6jNr1aoVW7duZcuWLSm3+vXr06tXr5S/9TnlDcoDaSkPZIzyQP6hPJA+5YIbc/s8YPPk8Vxn1qxZlo+PjzV9+nRr+/bt1uOPP24VKVLEioyMtDs0Wzz11FNWYGCgtXLlSuvEiRMpt4sXL6Yc8+STT1rlypWzfvrpJ2vTpk1WeHi4FR4ebmPUucM/V4GwLH1OeYnyQGrKA1mnPJB3KQ+kpVyQNe6UB1RYpGPixIlWuXLlLG9vb6thw4bW+vXr7Q7JNkC6t08//TTlmEuXLln9+/e3ihYtavn5+Vn33HOPdeLECfuCziX+N5Hoc8pblAeuUh7IOuWBvE15IDXlgqxxpzzgsCzLcvVVEhERERERyV80x0JERERERLJNhYWIiIiIiGSbCgsREREREck2FRYiIiIiIpJtKixERERERCTbVFiIiIiIiEi2qbAQEREREZFsU2EhIiIiIiLZpsJCbroKFSrgcDhwOBycP3/e7nAyLK/GLZJb5dXvVF6NWyQ3yqvfp7wat91UWLiphx9+OOUL889b+/btUx33+++/83//938EBwfj6+tLpUqV6NevH7t3777u848ZM4YTJ04QGBiYrTgPHDjAv/71L0qXLo2vry9ly5ala9eu7Ny5M9Vxly5dolChQuzduzfLr7Vx40bmzp2brXhF8hrlgrSUC8TdKA+kpTyQNSos3Fj79u05ceJEqtuXX36Zcv/ixYtp3Lgx8fHxfPHFF+zYsYPPP/+cwMBAXnzxxes+t7+/PyEhITgcjizHl5iYSJs2bYiOjuabb75h165dzJ49m9tuuy3N2YNly5ZRvnx5KlasmOXXK1myJMWKFcvy40XyKuWC1JQLxB0pD6SmPJBFlrilPn36WF27dr3m/XFxcVaJEiWsbt26pXv/uXPnrvnY8uXLW++++26qvk8//dQKDAy0Fi1aZFWuXNkqWLCgde+991pxcXHW9OnTrfLly1tFihSxBg4caCUlJVmWZVm///67BVgHDx684ft55JFHrGeffdayLMsaNWqUVbt2bevjjz+2QkNDrUKFCllPPfWUlZSUZL3xxhtWcHCwVbJkSeuVV15J8zwrVqywgOu+P5H8RLlAuUBEeUB54GbxsrOokdxr6dKlnD59mmHDhqV7f5EiRTL9nBcvXmTChAnMmjWL2NhYunfvzj333EORIkX47rvv2L9/P/feey9NmjShR48elCxZEg8PD77++muGDBmCp6dnus/rdDpZvHgx8+fPT+nbt28f33//PUuWLGHfvn3cd9997N+/n8qVK7Nq1Sp++eUXHnnkEVq3bk2jRo0y/V5E3IVygYgoD0iG2V3ZiD369OljeXp6WoUKFUp1e/XVVy3Lsqw33njDAqyzZ89m+rmvdXYCsPbu3ZvS98QTT1h+fn5WbGxsSl+7du2sJ554IqU9adIky8/Pz/L397fuuusua8yYMda+fftSPffatWutoKAgKzk52bIsc3bCz8/PiomJSfW8FSpUSDnGsiyrSpUq1tixY1M9l85OiLtRLlAuEFEeUB64WXTFwo3dddddTJ06NVXflfGElmXd9Nfz8/Pj1ltvTWkHBwdToUIFChcunKrv5MmTKe2IiAh69+7NypUrWb9+PXPmzOG1115j4cKFtGnTBoAFCxbQqVMnPDyuThmqUKEC/v7+qZ7X09Mz1TH/+1oi7kq5QLlARHlAeeBm0ORtN1aoUCEqVqyY6nYliVSuXBkgzUoL2VGgQIFUbYfDkW6f0+lM1efv70/nzp159dVX+eOPP2jatCmvvPJKyv0LFy6kS5cuN+W1RNyRcoFygYjygPLAzaDCQtLVtm1bSpQowZtvvpnu/Xat6exwOKhatSpxcXEA7Nmzh0OHDqWcqRCRm0u5QESUBySj/r+dO1RVGIrjOP4TxKBGQQYKQwRBn0KxWDRZBPENZKZFMdl8AjGLT2DUYvYRVAyGoWgTw71BuBfrPRvXue+nbWH7l/ODH2c7fAoVYff7XafT6eVePB5XJpNRKpXSdDpVu91Ws9lUv99XsViU53laLBY6HA6az+eBzrfdbjUcDtXtdlUul5VIJLRerzWbzeS6rqTnlme9XlcymQx0FuCTkQUAyAH4gWIRYcvlUpZlvdwrlUo/W52tVkubzUbj8VidTke32035fF61Wu1l2zEouVxOtm1rNBppt9spFov9XA8GA0nPEOn1eoHPAnwysgAAOQA/xL6C+CMHkWbbthzHkeM4gb7H8zxZlqXj8ahsNuvLM1erlarVqi6Xy5+OzwPwiywAQA5EC/9YIBCu6yqdTut6vQb2jvP5rMlk4luAVCoVNRoNX54F4IksAEAORAc7FvDdfr/X4/GQJBUKhZfj3N5ZWOcG3lVY11RY5wbeUVjXU1jn/m8UCwAAAADGqF8AAAAAjFEsAAAAABijWAAAAAAwRrEAAAAAYIxiAQAAAMAYxQIAAACAMYoFAAAAAGMUCwAAAADGKBYAAAAAjH0DeMqBo0MduskAAAAASUVORK5CYII=", "text/plain": [ "