EMagPy Logo
1.2.0

Contents:

  • Getting Started
  • Graphical User Interface
  • API documentation
  • Gallery of examples
    • CS vs FS on synthetic conductive models
    • Spatial data
    • Comparison of inversion algorithm using the Cover Crop dataset
    • Time-lapse field application
    • EMagPy Quickstart
    • Inversion of an water-born survey over the river Leith
    • Smoothing parameters and time-lapse inversion
    • Effect of noise and height on the inversion
    • Different forward models
    • 3D visualization
    • Multi-frequency inversion with EMagPy
    • Benchmarking the different inversion methods
    • Sensitivity, Gauss-Newton and DOI
    • Depth of investigation
    • Calibrated and not calibrated ERT with Boxford dataset
    • GF Instruments correction
EMagPy
  • »
  • Gallery of examples
  • View page source

Gallery of examplesΒΆ

Below is a gallery of examples

  • CS vs FS on synthetic conductive models
  • Spatial data
    • Observations
  • Comparison of inversion algorithm using the Cover Crop dataset
    • Observations
    • Sensitivity to \(\alpha\) (smoothing) parameter
    • Observations
  • Time-lapse field application
  • EMagPy Quickstart
    • Import EMagPy
    • Data import
    • Data visualization
    • Data inversion
  • Inversion of an water-born survey over the river Leith
  • Smoothing parameters and time-lapse inversion
    • Smoothing parameters
      • Vertical smoothing (alpha)
      • Lateral smoothing (beta)
      • Reference survey smoothing (gamma) or time-lapse inversion
      • Observations
    • Inverting change in ECa
  • Effect of noise and height on the inversion
  • Different forward models
  • 3D visualization
  • Multi-frequency inversion with EMagPy
  • Benchmarking the different inversion methods
  • Sensitivity, Gauss-Newton and DOI
    • Sensitivity
    • Gauss-Newton approach
  • Depth of investigation
  • Calibrated and not calibrated ERT with Boxford dataset
  • GF Instruments correction
    • What is the purpose of the calibration?
    • How the GF calibration works?
    • Impact on the inversion
      • Observations:
    • Conclusions
../_images/gallery_auto_examples_nb_paper-cs-vs-fs.ipynb_thumb.png

Fig. 8 CS vs FS on synthetic conductive models

../_images/gallery_auto_examples_nb_regolith.ipynb_thumb.png

Fig. 9 Spatial data

../_images/gallery_auto_examples_nb_comparison-inversion-cover-crop.ipynb_thumb.png

Fig. 10 Comparison of inversion algorithm using the Cover Crop dataset

../_images/gallery_auto_examples_nb_timelapse-wheat.ipynb_thumb.png

Fig. 11 Time-lapse field application

../_images/gallery_auto_examples_nb_quickstart.ipynb_thumb.png

Fig. 12 EMagPy Quickstart

../_images/gallery_auto_examples_nb_paper-river-fdem.ipynb_thumb.png

Fig. 13 Inversion of an water-born survey over the river Leith

../_images/gallery_auto_examples_nb_smoothing.ipynb_thumb.png

Fig. 14 Smoothing parameters and time-lapse inversion

../_images/gallery_auto_examples_nb_paper-noise-height.ipynb_thumb.png

Fig. 15 Effect of noise and height on the inversion

../_images/gallery_auto_examples_nb_paper-forward-models.ipynb_thumb.png

Fig. 16 Different forward models

../_images/gallery_auto_examples_nb_3d-surveys.ipynb_thumb.png

Fig. 17 3D visualization

../_images/gallery_auto_examples_nb_multi-frequencies.ipynb_thumb.png

Fig. 18 Multi-frequency inversion with EMagPy

">
../_images/gallery_auto_examples_nb_benchmark.ipynb_thumb.png

Fig. 19 Benchmarking the different inversion methods

../_images/gallery_auto_examples_nb_sensitivity.ipynb_thumb.png

Fig. 20 Sensitivity, Gauss-Newton and DOI

../_images/gallery_auto_examples_nb_paper-ert-calibration.ipynb_thumb.png

Fig. 21 Calibrated and not calibrated ERT with Boxford dataset

../_images/gallery_auto_examples_nb_gf-correction.ipynb_thumb.png

Fig. 22 GF Instruments correction

Next Previous

© Copyright 2020, G. Blanchy and P. McLachlan.

Built with Sphinx using a theme provided by Read the Docs.